Tekil Mesaj gösterimi
  #7  
Alt 17 March 2009, 04:27
AlpikE AlpikE isimli Üye şimdilik offline konumundadır
Junior Member
 
Kayıt Tarihi: 11 March 2009
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Cvp: Maddenin Yapisi - Bozunma

Bozunmalar > Elektron Pozitron Yokedilişi

Elektron-Pozitron Yokedilişi:
Yüksek enerjiyle çarpışan bir elektronla pozitron; zayıf ya da elektromanyetik etkileşim aracılığıyla birbirilerini yok ederek, bir tılsım kuarkla karşıtına vücut verebiliyor. Bu kuarklar da daha sonra, D+ ve D- mezonlarına yol açıyor. Yokedilme sürecinin aşamaları şöyle:
1. aşamada, elektronla pozitron, yokedilmelerine doğru yol alıyor.
2. aşamada, çarpışarak yok oluyor ve büyük miktarda enerji açığa çıkartıyorlar.
3. aşamada ortaya, ya zayıf etkileşimin taşıyıcısı olarak bir Z0, ya da elektromanyetik etkileşimin taşıyıcısı olarak bir gama ışını çıkıyor. Her ikisi de sanal taşıyıcı olabilir.
4. aşamada; sanal taşıyıcı, bir tılsım kuarkla karşıtına vücut veriyor.
5. aşamada, iki kuark birbirinden uzaklaşmayısa ve aralarındaki, gluonlardan oluşan güçlü kuvvet alanını germeye başlıyor.


6. aşamada, kuarklar birbirinden uzaklaşmayısa devamla, güçlü kuvvet alanını kopma noktasına getiriyor.
7. aşamada, güçlü kuvvet alanı kopuyor ve depolamış olduğu potansiyel enerji, bir aşağı kuarkla karşıtına dönüşüyor.
8. aşamada, aşağı kuarkla karşıtı birbirlerinden uzaklaşmayısa başlıyor.
9. aşamada, aşağı kuarkla karşıtı, sırasıyla, tılsım karşıtkuark ve tılsım kuarkla eşleşmeye yöneliyor.
10. aşamada; kuark ikilileri birbirlerinden yeterince uzaklaşarak, renk yükü nötür olan D+, D- mezon çiftini oluşturmuş oluyor ve mezonlar birbirlerinden uzaklaşıyor.

Görüldüğü üzere, bu yokedilme sürecinin, güçlü veya elektromanyetik etkileşimlerden herhangi birisinin aracılığı ile gerçekleşmesi mümkün. Çarpışan elektron ve pozitronun her birinin enerjisi en az 45.5GeV düzeyinde ise, 91GeV'luk ağır Z0 parçacığı oluşabiliyor. Z0 daha sonra, 10-24 saniye gibi kısa bir sürede bozunuyor. Z0'ın; buradaki şekilde bir tılsım kuarkla karşıtına bozunduğu gösteriliyor olmakla beraber, bir leptonla karşıtına bozunması da mümkün. Hangi kanalı izleyeceği, toplamı 1 olan olasılıklar çerçevesinde belirleniyor. Sürecin ara aşamaları, yaklaşık 10-24 saniyede tamamlanıyor ve dolayısıyla gözlenemiyor.
Diğer lepton bozunmalarına gelince... Gerçi muon bozunmalarına daha önce değinilmişti.

Orta ağırlıktaki lepton olan µ- ile karşıtı µ+ muonları; atmosferin onlarca kilometre yükseklikteki üst katmanlarını sürekli olarak bombardıman eden kozmik ışınlar tarafından üretiliyor. Kozmik ışınların ana bileşenlerinden birini, protonlar ve karşıtprotonlar oluşturuyor. Karşıtprotonlar atmosfer moleküllerindeki protonlardan biriyle çarpıştığında, yokedilme süreci sonrasında, yeni parçacıklar ve çoğunlukla da π mezonları oluşuyor.

Bu mezonlar, diğer parçacıkların yanında, muonlara da bozunuyor. Yarı ömrü 2.2 mikrosaniye olan muonlar da keza diğer parçacıklara; pozitron, elektron ve nötrinolara bozunuyor. Gerçi çok yüksek hızlarla hareket ediyor olmalarına karşın, onlarca kilometreyi katedip, deniz seviyesine ulaşamamaları gerekiyor. Halbuki yeryüzündeki sis odası belirleyicilerinde (dedektör) gözlemlenebiliyorlar ve bu durum zamanın, relativite kuramının öngördüğü şekilde genişlemesinin bir kanıtını oluşturuyor. Çünkü, kendi referans sistemlerinde kısa olan yarı ömürleri (t0), bizlerin 'laboratuvar sistemi'nde, yeryüzüne ulaşmalarını mümkün kılacak kadar uzamış (t) oluyor. (t=t0.(1-v2/c2)-1/2)

Yandaki sis odası fotoğrafında; alttan giren bir karşıtprotonun, yaklaşık durağan bir protona çarparak yokedilişi görülüyor.
Bu olayda 8 pion üretilmiş. Bunlardan birisi, karşıt muon (µ+) ile nötrinosuna bozunmuş Artı ve eksi yüklü pionlar, manyetik alan içerisinde zıt yönlere kıvrılıyor. Fakat yüksüz olan nötrino iz bırakmıyor.

En ağır lepton olan tau parçacığı, 1970'li yıllarda, 5GeV düzeyine ulaşan parçacık çarpıştırma deneyleri sırasında keşfedildi. Elektronun 3,500 katı ağırlıkta olan bu lepton, kararsız olup; diğer leptonlara, ya da bir veya daha fazla hadrona bozunuyor. Yarı ömrü 0.3 pikosaniye düzeyinde olduğu için, doğrudan gözlenemiyor. Varlığı ancak, bozunma ürünlerinin gözlenmesi sayesinde kantılanmış oluyor. Örneğin yandaki şekilde, orta kısımda oluşmuş bulunan τ+ ve τ- çiftinden her birinin bozunma şemaları görülüyor. Ağır tau leptonuyla karşıtı, oluşma noktalarından birkaç milimetre ötede bozunuyor ve doğrudan gözlenemiyorlar. Nötrinolar da keza gözlenemiyor. Fakat elektronla muon, belirlenebiliyor.
Ağır bir lepton bozunduğunda, ortaya çıkan parçacıklardan birisi daima, kendi nötrinosu oluyor. Diğer parçacıklar ise; ya bir kuarkla karşıtı; ya da daha hafif bir leptonla, bu leptonun karşıtnötrinosu olabiliyor. Öte yandan, bazı lepton bozunmaları hiç gözlenemiyor. Bu; bazı lepton bozunmaları mümkün iken, diğerlerinin imkansız olması gerektiğine işaret ediyor.
Bu durumu açıklamak için leptonlar, ikişer elemanlı üç aileye ayrılıyor: Elektron ve nötrinosu, muon ve nötrinosu, tau ve nötrinosu. Herhangi bir leptonun hangi aileye ait olduğunu ve hangi diğer ailelere ait olmadığını belirtmek için, birer sayı kullanılıyor: Elektron sayısı, muon sayısı, tau sayısı. Şöyle ki;
  • elektron sayısı; elektron ve elektron nötrinosu için +1, pozitron ve elektron karşıtnötrinosu için -1, tüm diğer leptonlar için 0,
  • muon sayısı; muon ve nötrinosu için +1, karşıt muon ve muon karşıtnötrinosu için -1, tüm diğer leptonlar için 0,
  • tau sayısı; tau ve nötrinosu için +1, karşıt tau ve tau karşıtnötrinosu için -1, tüm diğer leptonlar için 0 oluyor.
Lepton bozunmalarıyla ilgili önemli bir saptama şu: Ağır bir lepton daha hafif leptonlara bozunduğunda; elektron, muon ve tau sayılarının toplamları daima korunuyor.
Örneğin bir muon bozunduğunda; muon nötrinosu, bir elektron ve elektron karşıtnötrinosuna dönüşür:

Dikkat edilecek olursa burada; bozunma öncesindeki elektron sayısı, bozunma sonrasındaki elektron sayılarının toplamına eşit ve aynı durum, muon ve tau sayıları için de geçerli. Bu ve benzeri diğer korunum yasaları, herhangi bir lepton bozunma şemasının mümkün olup olmadığını belirliyor.


Örneğin,


bozunmasında muon yok. Dolayısıyla, muon sayısı her iki tarafta 0. Tau sayısı iki tarafta da +1. Elektron sayısı sol tarafta 0, sağ tarafta; +1+(-1)=0. Bu üç sayı korunuyor. Sol tarafta muonun elektrik yükü -1, sağ tarafta ise elektronunki -1: Korunuyor. Öte yandan; sol taraftaki muon, sağ taraftaki leptonlardan daha ağır: Kütle ve enerji de keza korunuyor. O halde bu bozunma mümkün oluyor.
Burada ise, elektrik yükü korunuyor. Öte yandan, tau muondan ağır: enerji korunabilir. Bozunma öncesi ve sonrasında elektron yok. Dolayısıyla, elektron sayısı her iki tarafta 0. Tau sayısı sol tarafta +1, sağ tarafta da +1. Bunların hepsi korunuyor. Fakat muon sayısı; sol tarafta 0, sağ tarafta ise +1: korunmuyor. Bu bozunma mümkün değil.


Bu bozunmada elektrik yükü korunuyor. Elektron sayısı; sol tarafta elektron, sağ tarafta da elektron nötrinosu nedeniyle +1. Muon sayısı; sol tarafta 0, sağ tarafta ise, muon ve muon karşıtnötrinosu nedeniyle; +1+(-1)=0. Her iki tarafta da tau bulunmadığından, tau sayısı da korunuyor. Fakat; elektron muondan çok daha hafif olduğundan, enerji korunamıyor. Bu bozunma imkansız. Parçacık bozunmalarında sadece lepton sayıları korunmuyor. Baryonların da korunan bir sayısı var.

Bir sistemin baryon sayısı, sistemdeki kuarkların sayısıyla karşıt kuarkların sayısı arasındaki farkın üçte biri olarak tanımlanıyor. Bu tanım, sistemin toplam renk yükünün sıfır olması gereğinden kaynaklanıyor. Sıfır renk yükü, örneğin, belli bir renk yüküne sahip bir kuarkla, bu rengin karşıtına sahip bir karşıt kuarkı bir araya getirmekle elde edilebilir. Ki bu durumda, baryon sayısı 0 olan bir mezon elde edilmiş olur. Veya, bir nötron ya da protonda olduğu gibi, renk yükleri farklı üç kuark bir araya gelerek, sıfır renk yüküne sahip bulunan ve baryon sayısı +1 olan bir system verir. Renk yükleri farklı üç karşıt kuarkın oluşturduğu bir 'karşıt parçacık'ın baryon sayısı ise -1'dir. Bir diğer olasılık, dört kuark ve bir karşıt kuarktan oluşan 'pentakuark'tır. Ki bunun da baryon sayısı +1 olur. Kuark veya karşıt kuark içermeyen parçacıkların baryon sayısı 0'dır.
Baryon sayısı tarihsel olarak, kuarkların keşfinden önce tanımlanmış bir sayı ve korunumu aslında, kuark sayılarının korunumuna karşılık geliyor. Dolayısıyla, baryon sayıları yerine kuark sayılarının korunumundan söz etmek daha doğru bir kullanım. Bu ve benzeri korunum ilkelerinin yanında, fiziksel olayların sağlaması beklenen başka koşullar da var. Çünkü örneğin, fizik yasalarının bazı açılardan simetrik olması beklenir. İyi güzel de, aslında hepimizin az veya çok tanışık olduğu, bu 'simetri' dediğimiz şey nedir?



Alıntı ile Cevapla