PDA

Orijinalini görmek için tıklayınız : jüpiter


Nixie
12 August 2009, 09:14
Jüpiter (Müşteri, Erendiz) Güneş Sisteminin ([Only Registered Users Can See Links]) en büyük gezegeni ([Only Registered Users Can See Links]). Güneşten uzaklığa göre beşinci sırada. Adını Roma tanrılarının en büyüğü Jüpiter ([Only Registered Users Can See Links](mitoloji))'den alır. Büyük ölçüde hidrojen ([Only Registered Users Can See Links]) ve helyumdan ([Only Registered Users Can See Links]) oluşmakta ve gaz devleri ([Only Registered Users Can See Links]) sınıfına girmektedir.

Fiziksel özellikler [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=1)]
Jüpiter gerek çap, gerekse kütle açısından güneş sistemindeki en büyük gezegendir. Nispeten düşük olan yoğunluğu (suyun yoğunluğunun 1,33 katı), gezegenin akışkan yapısı ve kendi çevresindeki dönüş hızının yüksekliği nedeniyle, Satürn ([Only Registered Users Can See Links](gezegen)) kadar olmasa da ekvatorda geniş, kutuplarda basık elipsoid ([Only Registered Users Can See Links]) görünüme sahiptir. Beyazlık ([Only Registered Users Can See Links](g%C3%B6kbilim)&action=edit&redlink=1) derecesi (albedo ([Only Registered Users Can See Links])) 0.52 olan gezegen, böylece yüzeyine düşen güneş ışığının yarıdan fazlasını görünür tayfta yansıtmaktadır. Ancak kızılötesi alandaki ışınım ölçüldüğünde, Jüpiter'in Güneş'ten aldığı enerjinin 2,3 katı kadarını dışarı yaydığı görülür. Bu nedenle gezegen, Güneş'e olan uzaklığına göre hesaplanan 106 K' den (-167°C) çok daha yüksek bir etkin sıcaklığa ([Only Registered Users Can See Links]) sahiptir ve 126 K (-147°C) sıcaklığında bir kara cisim ([Only Registered Users Can See Links]) gibi ışır. Jüpiter'in kendi içinde yarattığı bu enerji fazlası, gezegenin yerçekiminin etkisi ile yavaşca kendisi üzerine çökerek küçülmesi sırasında dönüştürülen potansiyel enerji ile açıklanmaktadır. Bu olgu Kelvin-Helmholtz mekanizması ([Only Registered Users Can See Links]) olarak adlandırılır.

İç yapı [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=2)]

Gaz devleri ([Only Registered Users Can See Links]), içerdikleri elementlerin oranlarına göre iki alt gruba ayrılırlar. Uranüs ([Only Registered Users Can See Links](gezegen)) ve Neptün ([Only Registered Users Can See Links](gezegen)) 'buz' ve 'kaya' oranı daha yüksek Uranian gezegenler ([Only Registered Users Can See Links]) grubundadır. Jüpiter ve Satürn ([Only Registered Users Can See Links](gezegen)) ise, adını yine Jüpiter'den alan Jovian gezegenler ([Only Registered Users Can See Links]) grubu içindedir. Jovian gezegenlerin kabaca Güneş ([Only Registered Users Can See Links])'i ve benzer yıldızları ([Only Registered Users Can See Links]) oluşturan maddeleri bu yıldızlardakine yakın oranlarda içerdiği düşünülür. 20. yüzyıl başlarından itibaren, gezegenlerin çap, kütle, yoğunluk, kendi etrafında dönme hızları, uydularının davranışları gibi verilerden yola çıkılarak iç yapıları hakkında ortaya atılan görüşler, daha sonra tayfölçümsel çalışmalarla ve son otuz yıl içinde gerçekleştirilen birçok uzay aracı araştırması ile zenginleştirilmiş ve günümüzde oldukça tatminkar modeller geliştirilmiştir.
Bu bilgiler çerçevesinde, Güneş sisteminin ilksel bileşimine paralel biçimde Jüpiter'in kütlesinin büyük kısmını hidrojen ([Only Registered Users Can See Links]) ve helyumun ([Only Registered Users Can See Links]) oluşturduğu varsayılır. Hidrojen/Helyum kütle oranı 75/25 civarındadır. Daha ağır elementlerin Güneş Bulutsusu ([Only Registered Users Can See Links]) içindeki toplam payı % 1 iken, hafif bir zenginleşme ile Jüpiter'de %3-4,5 arasında olabileceği hesaplanmaktadır. Bu sonuca, gezegenin gözlenen basıklığının 10-15 Yer kütlesinde yoğun bir çekirdeğin varlığı ile açıklanabilmesi üzerine varılmıştır. Jüpiter'i oluşturan yapı taşları özgül ağırlıklarına göre tabakalanmış durumdadır:

Gezegenin merkezinde demir ve ağır metallerle birlikte bunların çevresinde daha hafif elementleri içeren bir 'buz' ve 'kaya' tabakasının oluşturduğu çekirdek ([Only Registered Users Can See Links]) bulunur. Bu noktada ısı 20.000K, basınç 100 megabara (100 milyon atmosfer) yakındır. Yüksek basınçlar nedeniyle yoğunluğu 20g./cm3 olan bu katmanın yarıçapı 10.000 km.den küçük, ancak kütlesi Yer'in 10 katını aşkındır.
Çekirdeği çevreleyen alanda metalik hidrojenden ([Only Registered Users Can See Links]) oluşmuş 40.000 km. kalınlığında manto ([Only Registered Users Can See Links]) tabakası yer alır. Hidrojen 3 ila 4 Mbar'dan daha yüksek basınçlarda devreye giren van der Waals ([Only Registered Users Can See Links]) kuvvetlerinin etkisi ile moleküler yapısını kaybederek metalik özellikler kazanır, ısıl ve elektriksel iletkenliği çok artar. Manto tabakası merkezden itibaren gezegen yarıçapının 3/4'üne dek uzanır, Jüpiter'in hacminin yarıya yakınını, kütlesinin ise çok büyük bir çoğunluğunu oluşturur. Bu alandaki metalik hidrojenin sıvı nitelikte olduğu, yoğunluğunun dıştan içe doğru 1'den 5'e kadar (su=1) yükseldiği sanılmaktadır.
En dışta 20.000 km. kalınlığında moleküler hidrojen ([Only Registered Users Can See Links])(H2) tabakası bulunur. Gezegenin yüzeyine yaklaşıldıkça basınç, ısı ve yoğunluk düşer, hidrojen sıvıdan gaza dönüşür ve giderek atmosfer tabakasına geçilir.
Katmanlar arasında keskin sınırlar olmadığı, bir fazdan diğerine kademeli geçişler olduğu, aynı zamanda konveksiyon akımlarının katmanlar arası madde alışverişine kısmen de olsa izin verdiği tahmin edilir. Gezegenin iç kesimlerinde üretilen dev boyutlardaki ısının bu tür akımlar yardımıyla yüzeye dek aktarılabilmesi tümüyle akışkan nitelikte bir iç yapı varlığını gerektirmektedir.
Jüpiter'in bir gaz devinin ulaşabileceği en büyük çapa yakın boyutlarda olduğu hesaplanmıştır. Kütlesi daha büyük olan bir gezegen, artan kütleçekim gücünün etkisi ile kendi üzerine çökerek, Jüpiter'e oranla daha büyük yoğunluğa, daha küçük bir hacme sahip olacaktı. Daha yüksek çekirdek sıcaklığı anlamına gelen bu durum, kütlesi Güneş'in kütlesinin % 8'i kadar olan bir gezegenin nükleer füzyon ([Only Registered Users Can See Links]) için gerekli iç sıcaklığa ulaşarak bir yıldız ([Only Registered Users Can See Links]) haline gelmesi ile sonuçlanır. Bu nedenle, 0,001 Güneş kütlesindeki Jüpiter, 'yıldız olmayı başaramamış' bir gökcismi olarak da tanımlanabilir.

Atmosfer [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=3)]

Jüpiter'in kalın ve karmaşık bir atmosfer ([Only Registered Users Can See Links]) tabakası bulunmaktadır. Bu atmosferin Güneş Sistemi ([Only Registered Users Can See Links])'nin kökenini oluşturan Güneş Bulutsusu ([Only Registered Users Can See Links])'nun varsayılan yapısına yakın olarak, %88 oranında moleküler hidrojen (H2) ve %12 oranında helyum (He) içerdiği saptanmıştır. Bunları %0.1 oranla su buharı (H2O) ve metan (CH4) ve %0.02 oranla amonyak (NH3) izler. Azot, hidrojen, karbon, oksijen, kükürt, fosfor ve diğer elementleri içeren çeşitli bileşiklere milyonda bir düzeyini geçmeyen oranlarda rastlanmaktadır.
Aslında gaz devlerinin belirli bir yüzeyi olduğu söylenemez, gezegenden atmosfer olarak adlandırılabilecek en dış gaz tabakasına doğru kesintisiz, yumuşak bir geçiş sözkonusudur. Bu tür gezegenlerin çapları hesaplanırken 1 bar (yaklaşık 1 atmosfer) sınırının dışında kalan kısım dikkate alınmaz, basıncın 1 barı aştığı noktadan itibaren tüm hacim gezegenin sınırları içinde kabul edilir. Ancak çoğu zaman, atmosfer olarak adlandırılan alan, hidrojen gazı yoğunluğunun sıvı hidrojen yoğunluğu düzeyine çıktığı 10.000 bar basınç sınırına yani gezegenin binlerce kilometre içine dek genişletilir.
Uzaktan bakıldığında, Jüpiter yüzeyinin özellikle ekvatora yakın enlemlerde belirginleşen ardışık koyu ve açık renkli bulut kuşaklarından oluştuğu görülür. atmosferin en üst katmanlarındaki bulutlar kristal halindeki amonyak ve su parçacıklarından oluşur. Atmosferin derinliklerine doğru, yoğuşma sıcaklıklarına göre değişik bileşiklerin meydana getirdiği bulutlar tabakalar halinde birbirini izler. Atmosferde dikey ve yatay doğrultuda yoğun bir hareketlilik gözlenir, 600 km./saat hıza ulaşan rüzgarlar nadir değildir.
15.000 x 25.000 km. boyutları ile yerküreyle karşılaştırılabilecek büyüklükteki Büyük Kırmızı Leke ([Only Registered Users Can See Links])'nin çok uzun ömürlü dev bir 'fırtına' alanı olduğu düşünülmektedir.
Jüpiter'in atmosferi ([Only Registered Users Can See Links]) makalesinde konu hakkında daha ayrıntılı bilgi yer almaktadır.

Jüpiter'in kendi ekseni etrafında dönüşü [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=4)]

Katı bir yüzeye sahip olmayan Jüpiter'in dönüş özelliklerinin, atmosfer yapılarının gözlenen hareketlerine göre belirlenmesine çalışılmıştır. Ancak daha 1690 yılında Giovann Domenico Cassini ([Only Registered Users Can See Links]) ekvator bölgesi ile kutupların farklı devirlerle döndüğünü farketmiştir. Sonradan bu gözlem duyarlı ölçümlerle doğrulanmış ve gezegen için 'Sistem I' ve 'Sistem II' olmak üzere iki ayrı dönme süresi tanımlanmıştır. Ekvator bölgelerinin dönüşü 9 saat 50 dakika 30,003 saniyede tamamlanır ve Sistem I olarak adlandırılır. Kutup bölgelerinde dönüş süresi 9 saat 55 dakika 40,630 saniyedir ve Sistem II adını alır. Jüpiter'den yayılan mikrodalga ([Only Registered Users Can See Links]) ve radyo ([Only Registered Users Can See Links]) dalgaboyundaki ışınımların ise 9 saat 55 dakika 29,730 saniyelik bir dalgalanma göstermelerine dayanarak, gezegenin manyetik alanını belirleyen büyük metalik hidrojen kütlesinin bu hızla dönmekte olduğu sonucu çıkarılmıştır. 'Sistem III' adı verilen bu periyod Jüpiter'in gerçek dönüş hızı olarak kabul edilir, ve bu değerin kutuplardaki dönüş hızı ile hemen hemen aynı olduğu; ekvatorda ölçülen farklı hızın, bu bölgelerdeki bulutların 400 km./saat hıza ulaşan rüzgarlar nedeniyle doğuya doğru hareket etmelerinden kaynaklandığı dikkati çeker.

Halkalar [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=5)]

Yakın bir tarihe kadar Güneş sisteminde halkaları olduğu bilinen tek gezegen Satürn idi. Dış gezegenleri ziyaret eden ilk uzay aracı olan Pioneer 10'un 1973'deki gözlemleri üzerine varlığından kuşkulanılan Jüpiter halkaları 1979 yılında Voyager 1 ve 2 uzay araçları tarafından çekilen fotoğraflarda gösterildi.
Jüpiter'in Halka Sistemi HalkalarYörüngeJüpiter'in Merkezinden UzaklıkRJ(km.)Halo Halka1,4 1,71100.000 122.000Ana HalkaAna Halka (iç)1,71122.000XVI Metis1,79128.100XV Adrastea1,80128.900Ana Halka (dış)1,81129.000Gossamer HalkaGossamer Halka (iç)1,81129.200V Amalthea2,54181.400XIV Thebe3,11221.900Gossamer Halka (dış)3,15224.900
Satürn‘ün halkaları ([Only Registered Users Can See Links]) gibi Jüpiter halkaları da, toz denebilecek mikroskopik boyutlardan, onlarca metre büyüklüğe kadar değişen çeşitli boylarda çok sayıda parçacığın bir araya gelmesinden oluşurlar. Bu parçacıklar bir bulut oluştururcasına birbirinden bağımsız hareket eder ve herbiri gezegen etrafında kendine ait bir yörünge izler. Bu yörüngelerin gezegen ve iç uydularının çekim güçlerinin karşılıklı etkisi ile sürekli şekillenmesi sonucunda halkaların yapısı korunur. Satürn halkaları ile karşılaştırıldığında, Jüpiter'in halkalarının birçok yönden farklı olduğu görülür. Jüpiter halkalarının çok daha silik olmalarının ve zor gözlenmelerinin nedeni, kendilerini oluşturan toplam madde kütlesinin çok daha az olmasının yanısıra ışık yansıtıcılıklarının da sınırlı olmasıdır. Jüpiter halkaları, 0,05 gibi bir beyazlık ([Only Registered Users Can See Links](g%C3%B6kbilim)&action=edit&redlink=1) (albedo) derecesi ile üzerine düşen güneş ışığının büyük bir kısmını soğurur ve karanlık görünürler. Satürn yolculuğu sırasında Cassini-Huygens ([Only Registered Users Can See Links]) uzay sondası 2003 yılında Jüpiter'in yakınından geçerken yaptığı ölçümlerle Jüpiter halkalarının küresel değil, keskin kenarlı ve köşeli parçacıklardan oluştuğunu düşündüren veriler elde etti. Bu bilgiler halkaların Jüpiter'e yakın yörüngelerdeki uydulardan kopan parçacıklardan oluştuğu savını destekler niteliktedir. Bu uydulardan Metis ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1) ve Adrastea ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1) 'Ana halka'nın, Amalthea ([Only Registered Users Can See Links](uydu)) ve Thebe ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1) ise daha dışta yeralan 'Gossamer (ipliksi-ağsı) Halka'nın kaynağı olarak düşünülmektedir. Metis ve Adrastea, Jüpiter'in merkezinden 1,79 ve 1,81 RJ (Jüpiter yarıçapı) uzaklıktaki yörüngeleri ile gezegenin Roche Limiti ([Only Registered Users Can See Links])'nin içinde bulunurlar ve parçalanma sürecinde uydular olarak değerlendirilebilirler. Ana halka bu iki uydunun yörüngesi hizasında keskin bir dış sınırla kesintiye uğrarken, iç sınırı daha belirsizdir ve 'Halo (ayla) halka' adı verilen üçüncü bir bölümle silik bir şekilde atmosferin üst sınırlarına kadar devam eder. En dışta sınırları belirsiz dördüncü bir halka yapısı, çok seyrek bir toz bulutu şeklinde ters bir yörüngede döner. Bu halkanın kaynağı sonradan Jüpiter'in çekim alanına yakalanmış gezegenlerarası toz olabilir.

Manyetosfer [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=6)]

Jüpiter Güneş sistemi içinde en güçlü manyetik alana ([Only Registered Users Can See Links]) sahip gezegendir. Yer ([Only Registered Users Can See Links](gezegen)) ile karşılaştırıldığında 19.000 kat daha güçlü olduğu görülen bu alan, ekseni Jüpiter'in dönme eksenine 11o açı yapan ve gezegenin merkezine 8.000 km. uzaktan geçen, kutupları ters yerleşmiş olan bir çift kutupludur ([Only Registered Users Can See Links]). Böylece Jüpiter'in kuzey manyetik kutbu gezegenin güney coğrafi kutbuna, güney manyetik kutbu ise kuzey coğrafi kutbuna yakındır. Bu çift kutuplunun yanı sıra, Jüpiter'in manyetik alanının, yapısını karmaşıklaştıran bir dört kutuplu ve bir sekiz kutuplu bileşeni bulunmaktadır. Jüpiter'in kütlesinin ancak küçük bir kısmını oluşturan demir ve diğer ağır elementleri içeren çekirdeğinin bu denli güçlü bir manyetik alan yaratması mümkün olmadığından, gezegenin manyetizmasından metalik sıvı hidrojen tabakası sorumlu tutulur. Elektrik iletkenliği çok yüksek olan bu bölgedeki elektronların akımı, Jüpiter'in kendi çevresindeki hızlı dönüşünün etkisi ile güçlü bir manyetik alan oluşturur. Bu alanın etkisi ile, Jüpiter dev bir manyetosfere sahiptir.
Jüpiter manyetosferi, Güneş rüzgarı ([Only Registered Users Can See Links]) adı verilen ve güneş kökenli hızlı parçacıkların oluşturduğu plazma ([Only Registered Users Can See Links]) akımının, gezegenin manyetik alanın etkisi ile saptırılarak engellendiği bölgedir. Manyetosferin en dışında, plazma akımının hızla yavaşlayarak hızının ses hızının altına indiği ve yön değiştirdiği bir şok dalgası ([Only Registered Users Can See Links]) gözlenir. Güneş etkinliğine göre gezegene uzaklığı değişen bu sınır, uzay sondaları tarafından Jüpiter'den Güneş doğrultusunda 25-30 milyon km. uzaklıkta saptanmıştır. Gezegene yaklaştıkça manyetik alanın etkisi giderek artar ve güneş kökenli parçacıkların aşamayarak çevresinden dolaşmak zorunda kaldığı manyetopoz ([Only Registered Users Can See Links]), manyetosferin sınırını belirler. Bu alan da güneş rüzgarının şiddetindeki değişimlere paralel olarak kısa sürelerde genleşip daralmakla birlikte Jüpiter'in 3-7 milyon km. uzağında başlar. Güneş rüzgarının deforme ettiği manyetik kuvvet çizgilerine uyumlu olarak, bu sınır yanlara doğru genişleyerek gezegenden uzaklaşır ve bir damla biçimini alarak gezegenin arkasında bir milyar km. ye kadar uzanan bir kuyruk oluşturur.
Manyetosferin gezegene daha yakın kesimlerinde manyetik alana yakalanan elektrik yüklü parçacıkların doldurduğu iki dev Van Allen kuşağı ([Only Registered Users Can See Links]) bulunur.Bu bölgelerden kaynaklanan çok güçlü radyo dalgaları, 9 saat 55 dakika 30 saniyelik bir döngü içinde dalgalanmalar gösterir. Bunun Jüpiter'in manyetik alanının oluşumuna neden olan metalik hidrojen tabakasının dönme hızını yansıttığı varsayılarak, gezegenin kendi etrafındaki dönüş hızını atmosfer hareketlerinden bağımsız olarak saptamak mümkün olmuştur.
Van Allen kuşaklarında toplanan yüklü parçacıkların çoğunluğu Jüpiter atmosferinden koparak manyetik alana kapılan gazlardan kaynaklanır, ve büyük ölçüde iyonize hidrojen atomlarından salınan serbest elektron ve protonların yanı sıra, helyum, oksijen ve kükürt iyonlarına da rastlanır. Çok yüksek hızlara ulaşan bu iyonların oluşturduğu plazmanın ([Only Registered Users Can See Links]) ısısı 300-400 milyon K olarak ölçülmüştür. Bu, Güneş'in merkezi de dahil olmak üzere Güneş sisteminin (Güneş taçküresi ([Only Registered Users Can See Links] i&action=edit&redlink=1) dışında) bilinen herhangi bir noktasından çok daha yüksek bir sıcaklıktır. Aynı zamanda Jüpiter manyetosferi, hacim açısından Güneş sisteminin en büyük oluşumu olarak kabul edilmelidir.
Yüklü parçacıklar Jüpiter'in manyetik kutuplarındaki açık manyetik çizgiler boyunca ilerleyerek atmosferin yüksek tabakalarında kutup ışıklarının ([Only Registered Users Can See Links]) ortaya çıkmasına neden olurlar.
Jüpiter'in birçok uydusu manyetosferin içinde kalan yörüngelere sahiptir. Büyük uydulardan gezegene en yakın olan İo ([Only Registered Users Can See Links]), Jüpiter ile uydu arasında kesintisiz süren bir elektrik akımının etkisi altındadır. Uydu yüzeyinden iyonize atomları kopararak İo ve Jüpiter'i iki yönden birbirine bağlayan ve İo Plazma Torus'u ([Only Registered Users Can See Links]) adı verilen bir sıcak plazma halkası oluşturan bu akımın, 1000 gigawatt ([Only Registered Users Can See Links]) değerini bulduğu sanılır. Jüpiter'i çevreleyen 1 milyon km. yarıçapındaki alan, çok yoğun ışınımların varlığı nedeniyle uzay sondalarının bu alandan geçtikleri sıradaki etkinliklerini önemli ölçüde kısıtlamıştır, ve ileride yapılabilecek insanlı araştırmalar için önemli sakıncalar yaratabilecek durumdadır.



Uydular [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=7)]

[Only Registered Users Can See Links] ([Only Registered Users Can See Links] f) [Only Registered Users Can See Links] ([Only Registered Users Can See Links] f)



Jüpiter'in 63 doğal uydusu ([Only Registered Users Can See Links]) bilinmektedir. Galileo Galilei ([Only Registered Users Can See Links]) 1610 yılında kendi yaptığı basit teleskopla ([Only Registered Users Can See Links]) Jüpiter'in en büyük 4 uydusu ([Only Registered Users Can See Links]) İo ([Only Registered Users Can See Links](uydu)), Europa ([Only Registered Users Can See Links](uydu)), Ganymede ([Only Registered Users Can See Links](uydu)), ve Callisto ([Only Registered Users Can See Links](uydu))'yu keşfederek ilk kez Yerküreden başka bir gezegene ait uyduların varlığını göstermiştir. Bu uydular sonradan Galilei uyduları ([Only Registered Users Can See Links]) olarak adlandırılmıştır. 1970'lere kadar bilinen uydu sayısı 13 iken, Jüpiter'i ziyaret eden Voyager ([Only Registered Users Can See Links]) uzay araçları 3 yeni uydunun bulunmasına yardımcı olmuş, 2000 yılından bu yana yeryüzünden yapılan sistematik araştırmalarla, bu sayı kısa sürede artmıştır. Jüpiter'in doğal uyduları ([Only Registered Users Can See Links]) makalesinde uydular hakkında ayrıntılı bilgi yer almaktadır.

Jüpiter araştırmalarının tarihçesi [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=8)]


Eski çağlardan günümüze ulaşan kaynaklarda Jüpiter, Ay, Güneş, Merkür, Venüs, Mars, ve Satürn ile birlikte görünür hareketlerinin diğer yıldızlardan farklılığıyla tanınan 7 gökcisminden biri olarak gösterilir. Bu yönüyle, antik gökbilim için olduğu kadar astroloji ([Only Registered Users Can See Links]) açısından da önem taşıyan gezegen, birçok dilde haftanın yedi gününe adını veren varlıklardan biri olarak, tarihöncesinden günümüze insan kültüründe yerini korumuştur.
Jüpiter'in yalnızca parlak bir yıldız değil, üzerinde değişik koyulukta kuşakların seçilebildiği dairesel görünümde bir cisim olduğunu ilk farkeden 1610 yılında Galileo Galilei ([Only Registered Users Can See Links]) oldu. Galilei aynı zamanda Jüpiter'in en büyük dört uydusunu keşfetti ve Dünya ([Only Registered Users Can See Links]) dışındaki bir gezegenin kendi etrafında dönen uyduları olabileceğinin bu ilk kanıtını, Kopernik ([Only Registered Users Can See Links])'in o güne dek yaygın kabul görmeyen güneşmerkezli teorisini ([Only Registered Users Can See Links]) desteklemek için kullandı.
1664'te İngiliz bilim adamı Robert Hooke ([Only Registered Users Can See Links]), ( ya da bazı kaynaklara göre Fransız-İtalyan bilim adamı Giovanni Domenico Cassini ([Only Registered Users Can See Links])) Büyük Kırmızı Leke ([Only Registered Users Can See Links])'yi ilk kez gözledi.
1676'da Danimarkalı gökbilimci Ole Christensen Romer ([Only Registered Users Can See Links]), Jüpiter'in uydularının örtülme ([Only Registered Users Can See Links]) ve tutulma ([Only Registered Users Can See Links]) zamanlarındaki oynamaların gezegenin Yer'den uzaklığıyla ilişkisini ölçerek ilk kez ışık hızını ([Only Registered Users Can See Links]) %25 yanılma payı ile hesapladı. Ölçüm araçlarının gelişmesinin katkısıyla, Romer'in bulduğu bu yöntem, 19. yüzyıl başında ışık hızının %1'den daha az hata ile hesaplanmasına olanak tanıdı.
1690'da Cassini, Jüpiter'in kendi etrafında dönüş süresinin kutuplarda ve ekvatorda farklı olduğunu ilk kez gözlemledi.
1932'de Alman gökbilimci Rupert Wildt ([Only Registered Users Can See Links]) tayfölçümsel ([Only Registered Users Can See Links]) gözlemlere dayanarak Jüpiter atmosferinde metan ([Only Registered Users Can See Links]) ve amonyak ([Only Registered Users Can See Links]) bulunduğunu saptadı, bunun ancak çok büyük miktarlarda hidrojen ([Only Registered Users Can See Links]) varlığı ile açıklanabileceğini bildirdi. Wildt, 1934'te gezegenin kütle ve yoğunluk verilerinden yola çıkarak Jüpiter'in iç yapısının ve atmosferinin bileşimini bugün kabul edilene benzer şekilde hesapladı.
Hidrojen varlığının kanıtlanması ancak 1960'larda kızılötesi tayfölçüm ([Only Registered Users Can See Links] B6l%C3%A7%C3%BCm&action=edit&redlink=1) tekniklerinin gelişmesi ile gerçekleşti. Tayfölçümsel yöntemlerle varlığı ortaya çıkarılması çok güç olan helyum ([Only Registered Users Can See Links]) ise ancak 1970'lerde uzay sondalarının hidrojen-helyum atomları arasındaki etkileşimleri ölçmeleri ile gösterilebildi.
1955 yılında Burke ve Franklin, Jüpiter'den yayılan yüksek miktardaki radyo ışınımını rastlantısal olarak saptadılar. Bu buluş, Jüpiter'in çok güçlü magnetosferinin ([Only Registered Users Can See Links]) keşfedilmesine yol açtı.

Pioneer 10 ve 11 uzay araçları [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=9)]

Kasım-Aralık 1973'te Pioneer 10 ([Only Registered Users Can See Links]), Kasım-Aralık 1974'te Pioneer 11 ([Only Registered Users Can See Links]) adlı uzay sondaları Jüpiter'in yakınından geçerek gezegenin ilk yakından gözlemini gerçekleştirdiler. Sırasıyla 1972 ve 1973 yıllarında fırlatılan birbirinin aynı bu iki araç, sınırlı teknik donanıma sahip olmalarına karşın daha sonra gerçekleştirilen uçuşların planlanması için yaşamsal önem taşıyan bilgiler topladılar.

Jüpiter'in boyutları ve çekim gücü duyarlı biçimde ölçülerek yoğunluğunun ve kütlesinin daha büyük kesinlikle hesaplanmasına olanak sağlandı.
Gezegenin çekim alanının çok düzenli olduğu görüldü, buna dayanarak Jüpiter'in büyük ölçüde akışkan bir yapıya sahip olduğu görüşü güç kazandı.
Uyduların boyutları ve fiziksel özellikleri hakkında edinilen yeni bilgilerle Jüpiter sisteminin oluşumu ve evrimi üzerine yeni bakış açıları oluşturuldu.
Manyetosfer ile ilgili çok sayıda ölçüm yapıldı.
Jüpiter'in gezegenlerarası alana yüksek enerjili elektron ([Only Registered Users Can See Links]) ve düşük enerjili protonlar ([Only Registered Users Can See Links]) yaydığı saptandı ve böylece bilinen kozmik ışınım ([Only Registered Users Can See Links]) kaynaklarına yeni bir tanesi eklenmiş oldu.
Gezegenin birçok fotoğrafı çekildi, kızılötesi ([Only Registered Users Can See Links]) ve morötesi ([Only Registered Users Can See Links]) alanda incelemelerle atmosferin bileşimi ve meteorolojik ([Only Registered Users Can See Links]) özellikleri hakkında yeni bilgiler edinildi. Yeryüzünden gözlenemeyen kutup bölgelerinin görüntüleri elde edildi.
Büyük Kırmızı Leke ([Only Registered Users Can See Links])'ye benzer, daha küçük boyutta lekeler saptandı, bu oluşumların meteorolojik olaylar olabileceği düşüncesi sağlamlaştı.
Beta Scorpio ([Only Registered Users Can See Links]) yıldızının ([Only Registered Users Can See Links]) radyo ([Only Registered Users Can See Links]) ışınımının Jüpiter'in atmosferi ([Only Registered Users Can See Links]) tarafından örtülmesi incelenerek atmosferin değişik yükseltilerindeki sıcaklıklar ölçüldü.

Voyager 1 ve 2 uzay araçları [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=10)]

[Only Registered Users Can See Links] ([Only Registered Users Can See Links]) [Only Registered Users Can See Links] ([Only Registered Users Can See Links])
Voyager 1 ([Only Registered Users Can See Links]) tarafından çekilmiş Jüpiter'in farklı fotoğraflarından oluşan bir animasyon. Voyager 1 Jüpiter'e yaklaşırken, her Jüpiter günü (yaklaşık 10 saat) her bir kare çekilmiştir.


1977 yılında fırlatılan ve birbirinin aynı olan Voyager 1 ([Only Registered Users Can See Links]) ve Voyager 2 ([Only Registered Users Can See Links]) uzay araçları sırasıyla Ocak-Mart 1979 ve Haziran-Temmuz 1979 tarihlerinde Jüpiter'in yakınından geçerek gözlemlerde bulundular.

Voyager 1, Jüpiter'in de Satürn‘ün halkalarına ([Only Registered Users Can See Links]) benzer bir halka sistemi bulunduğunu saptadı.
Jüpiter'in 3 yeni uydusu, Adrastea ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1), Metis ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1), ve Thebe ([Only Registered Users Can See Links](uydu)&action=edit&redlink=1) keşfedildi.
Gezegenin ve uydularının çok sayıda yüksek çözünürlüklü görüntüsü elde edildi. Uyduların ayrıntılı yüzey fotoğrafları yardımıyla, iç yapıları hakkında değerli ipuçları sağlayan jeolojik ([Only Registered Users Can See Links]) özellikleri öğrenildi.
İo ([Only Registered Users Can See Links](uydu)) üzerinde volkanik ([Only Registered Users Can See Links]) aktivite gözlendi. Jüpiter manyetosferinin dış kesimlerine kadar uzanan alanda İo'dan kaynaklandığı sanılan kükürt ([Only Registered Users Can See Links]), oksijen ([Only Registered Users Can See Links]), ve sodyum ([Only Registered Users Can See Links]) izlerine rastlandı. Aynı elementlere ait iyonların ([Only Registered Users Can See Links]) İo yörüngesi içinde ışık hızının %10'una varan hızlara ulaşarak bir sıcak plazma ([Only Registered Users Can See Links]) alanı oluşturduğu saptandı. Pioneer uzay araçlarının gözlemleri ile çelişen bu bulgular iç manyetosferin değişken bir yapısı olduğu izlenimini oluşturdu.
İo'dan Jüpiter'e ulaşan akı ([Only Registered Users Can See Links]) hattının 5 milyon amper ([Only Registered Users Can See Links]) düzeyinde bir elektrik ([Only Registered Users Can See Links]) akımı taşıdığı saptandı.
Voyager 2'nin Satürn ([Only Registered Users Can See Links](gezegen))'e doğru yolculuğu sırasında Jüpiter manyetosferinin Satürn yörüngesine dek uzanan kuyruğu kanıtlandı.
Jüpiter atmosferinde yıldırımlara ([Only Registered Users Can See Links]) neden olan yoğun elektrik boşalmaları saptandı.
Bulut hareketleri izlendi, atmosfer akımlarının önceden bilinmeyen ayrıntıları saptandı, Büyük Kırmızı Leke ([Only Registered Users Can See Links])'nin altı günlük bir devirle saat yönünün tersinde döndüğü görüldü.
Kutup ışıkları ([Only Registered Users Can See Links]) gözlendi.
Atmosferin üst kesimlerindeki helyum ([Only Registered Users Can See Links]) oranı ölçüldü, Güneş ve gezegenleri oluşturan ilksel Güneş Bulutsusu ([Only Registered Users Can See Links])'nun bileşimi hakkında ipuçları sağlandı.

Ulysses uzay aracı [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=11)]

Güneş çevresinde kutupsal bir yörüngeye oturtulmak üzere 1990 yılında fırlatılan Ulysses ([Only Registered Users Can See Links]) uzay aracı, bu yörüngenin gerektirdiği ivmeyi ([Only Registered Users Can See Links]) kazanması amacıyla Jüpiter'in yakınından geçerek gezegenin çekim gücünden yaralanabileceği bir yol izledi. 8 Şubat 1992'de Jüpiter'in 450.000 km. kadar yakınından geçen araç, bu fırsatı değerlendirerek 2-14 Şubat tarihlerini kapsayan dönemde Jüpiter'in manyetosferi üzerinde yoğunlaşan gözlemlerde bulundu. İo Plazma Torus'u ([Only Registered Users Can See Links]) içinden geçerek ölçümler yaptı, manyetosferin çeşitli bölgelerinde manyetik alan, değişik frekanslarda ışınımlar, yüksek enerjili parçacıklar, ve plazma bileşenlerini hedef alan çok sayıda gözlem yaptı. Jüpiter yakın geçişi sonrasında kazandığı kutupsal yörüngesi sayesinde, Jüpiter manyetosferinin tutulum düzlemi dışındaki daha önce araştırılmamış bölgelerinde de gözlem yapma olanağını sağladı.
Ulysses, Kasım 2003-Nisan 2004 arasında ikinci kez Jüpiter'in yakınından geçti.

Galileo programı [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=12)]

1989 yılında fırlatılan Galileo ([Only Registered Users Can See Links](uzay_sondas%C4%B1)&action=edit&redlink=1) uzay aracı, bir yörünge aracı ve bir atmosferik sonda olmak üzere iki ayrı birimden oluşmakta idi.

Galileo'nun Jüpiter ile ilgili görevi planlanandan önce başladı. Temmuz 1994'te, gezegene ulaşmasından 18 ay önce, Shoemaker-Levy ([Only Registered Users Can See Links]) kuyrukluyıldızının ([Only Registered Users Can See Links]) Jüpiter'e çarpmasını yeryüzünden yapılan gözlemlere oranla daha elverişli açılardan görüntüledi.
Jüpiter'e yaklaşırken uzay aracından ayrılan atmosferik sonda 7 Aralık 1995'te gezegen atmosferine daldı, bir paraşüt ([Only Registered Users Can See Links]) yardımıyla yavaşlayarak, atmosferin derinliklerinde yüksek basınç ve ısı nedeniyle tahrip olmadan önce 58 dakika süreyle veri topladı ve yeryüzüne gönderdi. Ölçümler, atmosferin beklenenden çok daha kuru olduğu izlenimini verdi, ancak sonradan sondanın giriş noktasının alçalan kuru ve soğuk hava akımlarına denk gelen bir atmosfer bölgesinde olduğu görüşü ağırlık kazandı. Sonda, beklenen değerlerin beşte biri kadar su buharı, beklenenin yarısı kadar helyum ve metan düzeyleri gözledi. Yer ([Only Registered Users Can See Links](gezegen)) atmosferinde gözlenenden 10 kat fazla yıldırım ([Only Registered Users Can See Links]) etkinliği saptandı.
Galileo yörünge aracı, 7 Aralık 1995'te Jüpiter çevresinde yörüngeye girdi ve görevini tamamladığı 2003 yılına dek 35 tur tamamladı, İo ([Only Registered Users Can See Links](uydu)), Europa ([Only Registered Users Can See Links](uydu)), Ganymede ([Only Registered Users Can See Links](uydu)), Callisto ([Only Registered Users Can See Links](uydu)), ve Amalthea ([Only Registered Users Can See Links](uydu)) ile ilgili gözlemleri gerçekleştirdiği 34 yakın geçiş yaptı. Uyduların yüzey şekilleri ve iç yapıları ile ilgili geniş bilgi edinilmesini sağladı.
Jüpiter halkalarının oluşumunda kozmik çarpışmalar sonucunda iç uydulardan kopan maddelerin katkısı anlaşıldı.
Jüpiter manyetosferinin kendine özgü pek çok özelliği ortaya çıkarıldı.
21 Eylül 2003'te uzatılmış görevini tamamlayan Galileo, yaşam barındırma olasılığı bulunan uydulara zarar vermemesi için, Jüpiter üzerine düşürülerek parçalandı.

Cassini-Huygens programı [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=13)]

[Only Registered Users Can See Links] ([Only Registered Users Can See Links])
Satürn ve sisteminin araştırılması amacıyla 1997 yılında fırlatılan Cassini-Huygens ([Only Registered Users Can See Links]) uzay aracı, Jüpiter'in çekim gücünden yararlanarak yolculuğun hızlandırılabilmesi için bu gezegenin yakınından geçen bir rota izledi. 30 Aralık 2000 tarihinde Jüpiter yakın geçişini gerçekleştiren sonda, bu tarihin öncesi ve sonrasını kapsayan birkaç aylık süre içinde bilimsel aygıtlarını Jüpiter hakkında veri toplamak için çalıştırdı.

Jüpiter'in bugüne dek elde edilen en yüksek çözünürlüklü görüntüleri kaydedildi.
Jüpiter'in atmosferinde koyu renkli görünümü ile ayırdedilen kuşakların, alçalan gaz kütlelerinin oluşturduğu siklon ([Only Registered Users Can See Links]) alanları olduğu yönündeki yerleşmiş görüşü sarsan bulgular elde etti. Ayrıntılı görüntülerde, bu koyu kuşaklarda herbiri yükselen gaz kütleleri içeren açık renkli bulut kümelerinden oluşmuş çok sayıda küçük fırtına hücresinin bulunduğu ve net gaz hareketinin koyu kuşaklarda da yukarı doğru olduğu ortaya çıktı.
Jüpiter halkalarının neden olduğu ışık saçılmasının ([Only Registered Users Can See Links] C4%B1&action=edit&redlink=1) ölçümü, halkaların düzensiz ve köşeli parçacıklardan oluştuğunu ortaya koydu.

Chandra X-ışını gözlem uydusu ve Hubble uzay teleskopu [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=14)]

1999 yılında fırlatılarak Dünya etrafındaki yörüngesine oturtulan Chandra ([Only Registered Users Can See Links]) uydusu, X-ışını ([Only Registered Users Can See Links]) dalga boyunda yaptığı gözlemlerde, Jüpiter'in kutup bölgelerinde gözlenen dünyadakinden 1000 kat daha güçlü kutup ışıklarının elektronlarını kaybetmiş yüksek enerjili oksijen ([Only Registered Users Can See Links]) ve benzeri iyonların ([Only Registered Users Can See Links]) atmosfer ile etkileşimi sonucunda ortaya çıktığını belirledi. Eşzamanlı olarak Hubble uzay teleskopundan ([Only Registered Users Can See Links]) alınan görüntülerde hidrojen ([Only Registered Users Can See Links]) iyonlarında artışa rastlanmaması, bu parçacıkların Güneş ([Only Registered Users Can See Links]) kaynaklı olamayacağını ortaya koydu. Böylece Jüpiter'de gözlenen kutup ışıklarının Yer atmosferindekinden ([Only Registered Users Can See Links]) farklı bir mekanizma ile oluştuğu ve büyük olasılıkla İo ([Only Registered Users Can See Links](uydu))'dan kopan atomların Jüpiter manyetosferinde hızlanarak atmosfere çarpmalarının sonucu oldukları varsayımı güçlendi.

Tasarı aşamasındaki araştırmalar [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=15)]


Plüton ([Only Registered Users Can See Links](gezegen)) ve uydusu Charon ([Only Registered Users Can See Links](uydu))'u incelemek üzere NASA ([Only Registered Users Can See Links]) tarafından Ocak 2006'da fırlatılması planlanan ve hız kazanması için Jüpiter'in yakınından geçen bir rota izlemesi öngörülen New Horizons ([Only Registered Users Can See Links](uzay_sondas%C4%B1)&action=edit&redlink=1) uzay sondası, Şubat-Mart 2007'de Jüpiter ile ilgili gözlemler yapabilecektir.
NASA ([Only Registered Users Can See Links]) tarafından geliştirilmekte olan Prometheus ([Only Registered Users Can See Links](uzay_program%C4%B1)&action=edit&redlink=1) programının ilk aşaması JIMO ([Only Registered Users Can See Links]) (Jupiter Icy Moons Orbiter-Jüpiter Buz Uyduları Yörünge Aracı), Nükleer-Elektrik İtme Gücü ([Only Registered Users Can See Links]) ile hareket eden bir uzay sondası ile Jüpiter'in Galilei uyduları ([Only Registered Users Can See Links])'nın ayrıntılı incelenmesini olanaklı kılacaktır. Bu projenin en erken fırlatma tarihi olarak 2015 yılı önerilmektedir.

Gözlem koşulları [değiştir ([Only Registered Users Can See Links](gezegen)&action=edit&section=16)]

Bir dış gezegen ([Only Registered Users Can See Links]) olan Jüpiter, güneş çevresinde 12 yıllık dolanma süresi ile 13 ay süren kavuşum ([Only Registered Users Can See Links]) devrine sahiptir ve her yıl bir burçtan ([Only Registered Users Can See Links]) diğerine geçer. Venüs ([Only Registered Users Can See Links](gezegen))'ten sonra gökyüzünde izlenebilen en parlak gezegendir. Seyrek olarak, kısa dönemler için Mars ([Only Registered Users Can See Links](gezegen)) parlaklıkta Jüpiter'i geçebilir. Kavuşum ([Only Registered Users Can See Links]) dönemini kapsayan 1-2 aylık dönem dışında yıl boyunca rahatlıkla çıplak gözle izlenir. Yılın büyük bir bölümünde, en parlak yıldız olan Sirius ([Only Registered Users Can See Links])'un -1,5 düzeyindeki parlaklığını aşar ve en uygun karşı konum ([Only Registered Users Can See Links]) koşullarında -2,7 gibi bir parlaklığa ulaşır. Bu yönleriyle amatör gözlem için Venüs ve Mars'tan daha elverişlidir. Karşı konumda 50 saniyeye yaklaşan görünür çapı ([Only Registered Users Can See Links]) ile insan gözünün 1 dakika olan ayırma gücünün sınırına çok yaklaşır ve küçük büyütmeli bir dürbünle gezegenin diski seçilebilir. Amatör bir teleskopla Jüpiter'in kuşakları, Büyük Kırmızı Leke ([Only Registered Users Can See Links]) ve gezegenin kendi etrafında dönüşü, Galilei uyduları ([Only Registered Users Can See Links]) ve gezegen etrafındaki hareketleri izlenebilir.
Güneş Sistemi'nde Jüpiter'in özel yeri
Bazı özellikleri, Jüpiter'i eşşiz kılmaktadır:

Jüpiter, Güneş Sistemi'nin en büyük gezegeni olmakla kalmaz, kütlesi tek başına diğer tüm gezegenlerin toplam kütlesinin 2,5 katına ulaşır.
Kendi etrafında dönüş süresi en kısa olan gezegendir.
En güçlü manyetik alana ve en büyük manyetosfere sahip gezegendir.
Büyüklük ve çeşitlilik açısından en zengin uydu sistemine sahip gezegendir. Güneş Sistemi'nin en büyük gezegen uydusu Ganymede ([Only Registered Users Can See Links](uydu)), Jüpiter etrafında dönmektedir.