Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Eğitim - Öğretim > matematik - geometri
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 27 November 2008, 10:46
Syst3m - ait Kullanıcı Resmi (Avatar)
Root Administrator
 
Kayıt Tarihi: 26 July 2008
Mesajlar: 3,557
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Thumbs up Matematiğin tarihçesi

Ortaçağ

İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır.

Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur.

Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü.

Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır.

Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir.

İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır.

Yeniçağ

Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir.

Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür.

Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır.

Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır.

Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır.

Yakınçağ

Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir.

Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır.

Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır.

Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir.

Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir.

Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur.
Alıntı ile Cevapla
  #2  
Alt 27 November 2008, 12:19
Senior Member
 
Kayıt Tarihi: 21 September 2008
Mesajlar: 15,180
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Post Cvp: Matematiğin tarihçesi

Matematik tarihi

Matematikle ilgili eserler incelendiğinde; birinci grup olarak, Eski Yunan matematikçilerinden Tales (Thales M.Ö. 624-547), Pisagor (Pythagoras M.Ö. 569-500), Zeno (M.Ö. 495-435), Eudexus (M.Ö. 408-355), Öklid (Euclides M.Ö. 330?-275?), Arşimet (Archimedes M.Ö. 287-212), Apollonius (M.Ö. 260?-200?), Hipparchos (M.Ö. 160-125), Menaleas (doğumu, M.Ö. 80) İskenderiyeli Heron (? -M.S.80)antanus, adıyla da tanınır, 1436-1476), Cardano (1501-1596), René Descartes (1596-1650), Pierre de Fermat (1601-1665), Blaise Pascal (1623-1662), Isaac Newton (1642-1727), Leibniz (1646-1716), Mac Loren (1698-1748), Bernoulli'ler (Bu aileden sekiz ünlü matematikçi vardır. Bunlar; Jean Bernoulli l667-1748, Jacques Bernoulli 1654-1705, Daniel Bernoulli 1700-1782...), Euler (1707-1783), Gespard Monge (1746-1818), Lagrange (1776-1813), Joseph Fourier (1768-1830), Poncolet (1788-1867), Gauss (1777-1855), Cauchy (1789-1857), Nikolay İvanoviç Lobaçevski (1793-1856), Abel (1802-1829), Boole (1815-1864), Riemann (1826-1866), Dedekind (1831-1916), Henri Poincaré (1854-1912) ve Cantor (1845-1918) ile bunların çağdaşlarının adları belirtilir Bu bilginlerin adlarını ve matematikle ilgili sistem, teorem ve kavramlarını her kademedeki orta dereceli okul ile üniversite ve dengi okul matematik kitaplarında görmek mümkündür.

Yukarıda; birinci grup olarak belirttiğimiz; Eski Yunan (Antik çağ, Grek) matematikçileri; M.Ö. 8. yüzyıl ile M.S. 2. yüzyıl arasında, ikinci grup olarak belirttiğimiz Batı Dünyası matematikçileri ise, 16. ile 20. yüzyıl arasında yaşamışlardır: Burada akla şöyle bir soru gelmektedir. 16. yüzyıldan önceki zaman içerisinde matematik konularında hiçbir araştırma ve çalışma olmamış mıdır? Özellikle, islamiyetin ilk yılları olan 7. yüzyıl ile 16. yüzyıl arasında yaşamış olan Türk-İslam Dünyası matematik bilginlerinin varlığı ve çalışmaları görmezlikten gelinmiştir.Ortaçağ Avrupasında ne ve niçin soruları sorulamazdı,din adamları bilimle uğraşan insanları çeşitli şekillerde cezalandırırlardı.Bu nedenle ortaçağda bilim avrupada gelişmemiştir.Bilim daha çok islam dünyasında gelişmiştir.Coğrafi keşifler başladığı vakit avrupalı halkın papaya inancı kalmamıştır. Çünki papa dünyanın düz bir tepsi olduğunu savunuyordu.coğrafi keşifler başladığında ise bunun yalan olduğu ortaya çıktı.Halk okullar açmaya başladı,bilim avrupada gelişmeye başladı.

Gerçek olan şu ki; Türk-İslam Dünyası matematikçileri, yukarıda birinci grup olarak adlarını belirttiğimiz Eski Yunan bilginlerinin ortaya koyup, yeterli çözüm getiremedikleri, matematik sorunlarına yeni çözümler getirdikleri gibi, bu bilime yeni sistem, kavram ve teorem kazandırmışlardır. Bu başarılarının sonucu bugünkü ileri matematiğin temelini atmışlardır. Her ne kadar, Batı'lı bazı bilim tarihçileri, Eski Yunan matematiğini geliştirmiş olmakla vasıflandırıyorlarsa da, son yüzyıl içinde yapılan araştırmalar, bu hükmün temelinden yanlış olduğunu ortaya koymuşlardır.

Ülkemizde, evrensel nitelikteki kendi alimlerimizin bilimsel yönlerine gereken ve yeterli önem verilmezken; Batı'da, özellikle son yüzyıl içerisinde, bilginlerimize ait yüzlerce cilt eser ve makalelerin yayınlandığı, hatta bu bilginlerimiz için, yaşadığı yüzyıllara adlar verildiği ve anma törenleri düzenlendiğini görmek mümkündür. Bunlardan birkaç örnek vermek gerekirse; dünyada ilk cebir kitabı yazanın Harezmi (Harezm 780-Bağdat 850), trigonometrinin temel bilginlerinden olan sinüs ve cosinüs tanımlarını ilk açıklayan el-Battani (Harran 858-Samarra 929), tanjant ve cotanjant tanımları ile ilgili temel bilgileri Ebu'l Vefa (Buzcan 940-Bağdat 998), Blaise Pascal'a (1623-1662) izafe edilen ve cebirde önemli kuralları ihtiva eden "Binom Formülünün" Ömer Hayyam'a (1038-Nişabur 1132) ait ve Johannes Kepler'in (1570-1630) araştırmalarına rehberlik edenin İbn-i Heysem (Basra 965-Kahire 1039). olduğunu belirtebiliriz. Ayrıca Sabit bin Kurra (Harran-826-Bağdat 901) için "Türk Öklid'i" bilim dünyasının en büyük alimi, Beyruni (Bruni) (Ket 973-Gazne 1052) için "Onuncu Yüzyıl Bilgini", ünlü Türk hükümdarı Uluğ Bey için "On Beşinci Yüzyıl Bilgini" öğrencisi Ali Kuşçu için "On Beşinci Yüzyıl Batlamyos'u" dendiğini de belirtmek mümkündür.

Yukarıda sadece birkaçının adını belirttiğimiz 8. ile 16. yüzyıl Türk-İslam Dünyası alimlerinin eserleri, Batı'da "Tercüme Yüzyılı" olarak adlandırılan 12. yüzyıl başlarından itibaren, önceleri zamanın bilim dili olan Latince'ye, daha sonradan da, öteki Batı dillerine çevrilmiştir. Çevrilen bu eserlerin asılları ise, Doğu Yazma Eserleri ile zengin olan Avrupa kütüphanelerinde muhafaza edilmekte ve hala, ilgili bilim adamlarının elinde, gerektiğinde temel müracaat kitabı, ya da kaynak eser olarak değerlendirilmektedir.

Bazı kaynaklar, matematiğin kurucusu ve geliştiricisi olarak, Batı dünyası matematikçilerinin adlarını belirtir. Gerçekte; Avrupa, 8. ile 16. yüzyıl Türk-İslam Dünyası matematikçilerinin hazırlamış oldukları temel eserlerden büyük istifadeler sağlayarak, matematiği, bugünkü ileri seviyesine ulaştırabilmişlerdir. Öyle ki; Türk-İslam Dünyası matematikçileri, Batı dünyasının ilmi düşünce ve araştırma duygularını ateşleyerek harekete geçirip beslediler ve yeni bir canlılık kazandırdılar. Cebir, geometri, aritmetik ve trigonometri konularında Batı'yı kendi görüş ve keşiflerine dayanarak ilerleyebileceği seviyeye getirdiler.

16. yüzyıl sonları için İtalyan matematikçi Cordano'nun (1501-1576) adını belirtebiliriz.

17. yüzyılda; İngiliz (İskoçyalı) Jean Napier (1550-1617), İsviçre matematikçilerinden Gulden (1577-1643); İtalyan matematikçilerinden Cavalieri (1598-1647); Fransız matematikçilerinden René Descartes (1596-1650), Desargues (1593-1662), Blaise Pascal (1623-1662), Pierre Fermat (1601-1663); Hollandalı matematikçi Huygens'in (1629-1695) adlarını belirtebiliriz.

Bu kişilerden Jean Napier logaritmaya ait sistemleri ortaya koymuştur. Descartes de analitik geometriye ait yeni bazı temel esasları ortaya koymuş, mevcut analitik geometri bilgilerini sistemleştirmiştir. Diğer matematikçiler de, matematiğin çeşitli dallarına ait, bazı yeni temel bilgiler kazandırmışlardır.

18. yüzyılda; İsviçre matematikçilerinden; Jacques Bernouilli I (1654-1705), Cramer (1704-1752), Leonhard Euler (1707-1783), Alman matematikçilerinden Gottfried Wilhelm Leibniz (1146-1716), İngiliz matematikçilerinden Isaac Newton (1642-1727), Mac Loren (1698-1746), İtalyan Matematikçilerinden Ceva (1648-1734), Riccati (1676-1754), Fransız matematikçilerinden Clairaut'in (1713-1765) adlarını belirtebiliriz.

19. yüzyıl Fransız matematikçilerinden; Joseph Louis Lagrange (1736-1813), Gasport Monge (1746-1818), Pierre Simon De Laplace (1749-1827), Joseph Fourier (1768-1830), Evariste Galois (1811-1832), Legendre (1752-1833), F. W. Bessel (1784-1846), Augustin Louis Cauchy (1789-1857), Jean-Victor Poncolet (1788-1857), Poinsot (1771-1859), Brianchan (1785-1864), Dupin (1784-1873), Chasley (1793-1880), Charles Hermite (1822-1901); İtalyan matematikçilerden Carnot (1753-1823); Norveç matematikçilerinden Niels Henrik Abel (1802-1829), Alman matematikçilerden, Jacobi (1804-1851), Carl Friedrich Gauss (1777-1855), Bernhard Riemann (1826-1866), Leopold Kronecker (1823-1891), Ernst Kummer (1810-1893), Weierstrass (1815-1897); Sovyet matematikçilerinden Nicolas Ivanawitch Lobatchewsky (1793-1856), Sonia Kowallewska (1850-1891); İngiliz matematikçilerden George Boole (1815-1864), Cayley (1821-1895), James Joseph Sylvester (1814-1897) ve İrlandalı matematikçi William Rowan Hamilton (1805-1865) adlarını belirtebiliriz.

Bu kişilerden; Gasport Monge, tasarı geometrinin; Carnot, konum geometrisinin; Newton, sonsuz küçükler geometrisini; pascal, Huygens ve Fermat da, olasılık hesabını ve gök mekaniğini geliştirdiler.

20. yüzyıl başları için; Alman matematikçilerinden Dedekind (1831-1916), Georg Cantor (1845-1918), Fransız matematikçilerinden Henri Poincaré'nin (1854-1912), ülkemizde de, Henri Poincaré'nin öğrencisi Salih Zeki'nin (1864-1921) adlarını belirtebiliriz.

Daha sonra gelen; Alman, İngiliz, Fransız, Amerika Birleşik Devletleri ve Sovyet Sosyalist Cumhuriyelteri Birliği, Japonya ve Hindistan ile Çin'de yetişen matematikçiler, matematiğe kazandırdıkları yeni bilgiler ile, matematiği insan zekasının en yüksek eseri haline getirmeyi başardılar.

Yapılacak kısa açıklamalardan sonra, şu gerçek ortaya çıkacaktır. Bugünkü ileri matematik ve bunun uygulama alanı olan astronomi (gökbilim) ve fiziğin temel bilgileri, uygulamaları ile birlikte, başlangıçta, Eski Mısır ve Mezopotamya'da vardı. Daha sonraları bu bilgiler, Eski Yunan, Eski Hint ve 8. ile 16. yüzyıl Türk-İslam Dünyasında ileri seviyeye gelmiştir. Bilahare 17. yüzyıl sonrası, Batı Dünyasında yapılan çalışmalar sonucunda, bugünkü Saadet Devrine ulaşabilmiştir. Bu gelişimde, 17. yüzyıl öncesi medeniyetlerin şeref payları inkar edilemeyecek kadar açıktır.

İlk defa İslam dünyasında kullanılan cebr Batı dünyasına algebre şeklinde geçti. En eski Türk riyazisi İbn Türk El-Cili'dir. Sonrakiler Meruzi, el-Harezmi'dir. Algoritmi tabiri el-Harezmi'den gelmektedir. Kitabül muhtasar ficcebir vel mukabele ve Kitabül muhtasar fil hesabül hindi, Zeycül Harezmi en meşhur kitaplarıdır.

10. yy.da Ebu Berze, Bozcanlı ebul Vefa, Hocendi Ebu Mahmud Han. Ve el-Biruni (974-1048), İbni Sina'nın çağdaşı. Eserlerinden en önemlileri El-Asarül Bakiye, El-Kanunul Mesudi'dir. Antakyalı Ebul Kasım Mehmed, Nesalı Kadı Ebul Hasan'dan sonra faaliyet durdu. Kaşanlı Yahya'dan sonra Nasir Tusi geldi. 1274'de vefat eden Tusi'nin bazı eserleri: Tahriri usuli Öklides, Tahrirül Mecesti, Tahrirül Mutavassıtat, Zeyç İlhani, Tezkeretül Nasiriye, Zeyç Şahi. 14. yy. matematikçileri arasındaki Kaşanlı Gıyased[[din Cemşid'in eserleri: Nüzhetül Hadaik, Miftahül Hesab. 15. yy.da]] Yıldırım Bayazıd zamanında Kadızade Rumi. Eserleri: Risaletü fil Hesab, Eşkalüt Tesis, Risaletül Ceyp. Diğeri Uluğ Bey (1393-1449). Semerkand'da bir rasathane yaptırıp Kadızade, Gıyaseddin ve Ali Kuşçu burayı yönetmiştir. Uluğ Bey'in Zeyci Gürghani eseri meşhurdur. Bu yüzyılda Ali Kuşçu Ayasofya müderrisliğinde şu eserleri verdi: Risalei fil Heye, Risalei fil Hesab, Risaletül fethiyye, Risaletül Muhammediye. Diğer matematikçi Mirim Çelebi'dir. Eseri Düsturu Amel'dir. Takiyüddin Rasıd bu asrın son temsilcisi ve Tanzimat'a kadar matematikte faaliyet durdu.
Alıntı ile Cevapla
  #3  
Alt 18 June 2009, 11:35
Senior Member
 
Kayıt Tarihi: 9 November 2008
Mesajlar: 837
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Cevap: Matematiğin tarihçesi

Alıntı ile Cevapla
Cevapla




Saat: 05:17


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2024, ve
Jelsoft Enterprises Ltd.'e Aittir.
gaziantep escort bayan gaziantep escort
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com ikili opsiyon bahis vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort
mecidiyeköy escort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2