#1
|
|||
|
|||
Cantor'un Köşegen Yöntemi
Cantor'un Köşegen Yöntemi
Georg Cantor'un doğal sayılar ile reel sayıların birebir eşlemesinin yapılamayacağını göstermek için geliştirdiği yöntem. Böyle bir eşlemenın varlığı sonsuz elemanlı kümelerin büyüklüklerinin karşılaştırılması kavramının gelişimi açısından son derece önemlidir. İıÖötrtttr444twerrtertıÇ== Büyüklük == Verilen bir A kümesinin en az B kümesi kadar büyük olması B'den A'ya bir birebir fonksiyonun var olması şeklinde tanımlanır ( yazılır). Böylelikle B'nin bir kopyasının A'nın içersinde bulunabiliyor olması sağlanır. Eğer aynı şekilde B'den de A'ya bir birebir fonksiyon varsa o zaman bu iki küme eşit büyüklükte denir ( yazılır).
1) 0,13567....... ^ 2) 0,25678....... ^ 3) 0,00212....... ^ 4) 0,14221....... ^ . C sayısının ilk basamağının 1'den farklı, 2. basamağının 5'ten farklı, 3. basamağının 2'den farklı, 4. basamağının gene 2'den farklı birer rakam olarak seçeriz. Bu noktada fark etmemiz gereken şey, C'nin kendisi bir reel sayı olduğu halde bu listede yer alan her sayıdan en az bir ondalık basamakta (daha doğrusu o sayı listemizde kaçıncı sırada yer alıyorsa o basamakta) farklı olduğu ve dolayısıyla bu listede yer alamayacağı. Demek ki varsaydığımız birebir eşleme mümkün değil ve aslında reel sayılar kümesindeki eleman sayısı doğal sayılar kümesindeki eleman sayısından daha fazla. |