![]() |
üçgenlerde alan
Bir açısının ölçüsü 90° olan üçgene dik üçgen denir. Dik üçgende 90° nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde, m(A) = 90° [BC] kenarı hipotenüs
[AB] ve [AC] kenarları dik kenarlardır. http://www.cebirsel.com/maths/ossGeo...r/geo_3.51.gif
a2=b2+c2http://www.cebirsel.com/maths/ossGeo...r/geo_3.52.gif
Kenar uzunlukları (3 - 4 - 5) sayıları veya bunların katı olan bütün üçgenler dik üçgendir. (6 - 8 - 10), (9 - 12 - 15), … gibi http://www.cebirsel.com/maths/ossGeo...r/geo_3.53.gif2. (5 - 12 - 13) Üçgeni Kenar uzunlukları (5 - 12 - 13) sayıları ve bunların katı olan bütün üçgenler dik üçgenlerdir. (10 - 24 - 26), (15 - 36 - 39), … gibi. http://www.cebirsel.com/maths/ossGeo...r/geo_3.54.gif Kenar uzunlukları 8, 15, 17 sayıları ile orantılı olan üçgenler dik üçgenlerdir.http://www.cebirsel.com/maths/ossGeo...r/geo_3.55.gifKenar uzunlukları 7, 24, 25 sayıları ile orantılı olan üçgenler dik üçgenlerdir.http://www.cebirsel.com/maths/ossGeo...r/geo_3.56.gif3. İkizkenar dik üçgen ABC dik üçgen |AB| = |BC| = a |AC| = aÖ2 m(A) = m(C) = 45° İkizkenar dik üçgende hipotenüs dik kenarların Ö2 katıdır. http://www.ircrehberi.com/4. (30° – 60° – 90°) Üçgeni ABC eşkenar üçgeni yükseklikle ikiye bölündüğünde ABH ve ACH (30° - 60° - 90°) üçgenleri elde edilir. |AB| = |AC| = a |BH| = |HC| = http://www.cebirsel.com/maths/ossGeo...r/geo_3.59.gifpisagordan http://www.cebirsel.com/maths/ossGeo...r/geo_3.60.gifhttp://www.cebirsel.com/maths/ossGeo...r/geo_3.61.gif(30° - 60° - 90°) dik üçgeninde; 30°'nin karşısındaki kenar hipotenüsün yarısına eşittir. 60° nin karşısındaki kenar, 30° nin karşısındaki kenarın Ö3 katıdır. http://www.cebirsel.com/maths/ossGeo...r/geo_3.63.gif5. (30° - 30° - 120°) Üçgeni (30° - 30° - 120°) üçgeninde 30° lik açıların karşılarındaki kenarlara a dersek 120° lik açının karşısındaki kenar aÖ3 olur. http://www.cebirsel.com/maths/ossGeo...r/geo_3.64.gif6. (15° - 75° - 90°) Üçgeni (15° - 75° - 90°) üçgeninde hipotenüse ait yükseklik |AH| = h dersek, hipotenüs |BC| = 4h olur. Hipotenüs kendisine ait yüksekliğin dört katıdır. http://www.cebirsel.com/maths/ossGeo...r/geo_3.65.gif
h2 = p.k2.b2 = k.ac2 = p.a3. ABC üçgeninin alanını iki farklı şekilde yazıp eşitlediğimizde a.h =b.c
|BH| = |HC| m(B) = m(C) http://www.cebirsel.com/maths/ossGeo...r/geo_3.69.gif2. Bir üçgende, açıortay aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir. |AB| = |AC|, [AH] ^ [BC] m(B) = m(C) http://www.cebirsel.com/maths/ossGeo...r/geo_3.70.gif3. Bir üçgende, yükseklik aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir. |AB| = |AC| m(BAH) = m(HAC) m(B) = m(C) http://www.cebirsel.com/maths/ossGeo...r/geo_3.71.gifİkizkenar üçgende açıortay, kenarortay ve yüksekliğin aynı olması birçok yerde karşımıza çıktığından çok iyi bilinmesi gereken bir özelliktir.4. İkizkenar üçgende ikizkenara ait yükseklikler eşittir. Bu durumda yüksekliklerin kesim noktasının ayırdığı parçalarda eşit olur.http://www.cebirsel.com/maths/ossGeo...r/geo_3.72.gif5. İkizkenar üçgende ikizkenara ait kenarortaylar ve kenarortayların kesim noktasının ayırdığı parçalar da birbirine eşittir.http://www.cebirsel.com/maths/ossGeo...r/geo_3.73.gif6. İkizkenar üçgende eşit açılara ait açıortaylar da eşittir. Açıortaylar birbirini aynı oranda bölerler.http://www.cebirsel.com/maths/ossGeo...r/geo_3.74.gif7. İkizkenar üçgende ikiz olmayan kenar üzerindeki herhangi bir noktadan ikiz kenarlara çizilen dikmelerin toplamı, ikizkenarlara ait yüksekliği verir. |AB| = |AC| Þ |LC| = |HP| + |KP|http://www.cebirsel.com/maths/ossGeo...r/geo_3.76.gif8. İkizkenar üçgende tabandan ikiz kenarlara çizilen paralellerin toplamı, ikiz kenarların uzunluğuna eşittir. http://www.cebirsel.com/maths/ossGeo...r/geo_3.77.gif http://www.cebirsel.com/maths/ossGeo...r/geo_3.78.gifEŞKENAR ÜÇGEN 1. Eşkenar üçgende bütün açıortay, kenarortay yükseklikler çakışık ve hepsinin uzunlukları eşittir. nA = nB = nC = Va = Vb = Vc = ha = hb = hc http://www.cebirsel.com/maths/ossGeo...r/geo_3.79.gif2. Eşkenar üçgenin bir kenarına a dersek yük seklik http://www.cebirsel.com/maths/ossGeo...r/geo_3.80.gif Bu durumda eşkenar üçgenin alanı http://www.cebirsel.com/maths/ossGeo...r/geo_3.81.gifhttp://www.cebirsel.com/maths/ossGeo...r/geo_3.82.gifyükseklik cinsinden alan değeri Alan(ABC) = http://www.cebirsel.com/maths/ossGeo...r/geo_3.83.gif 3. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen dik uzunlukların toplamı, eşkenar üçgene ait yüksekliği verir. Bir kenarı a olan eşkenar üçgende; http://www.cebirsel.com/maths/ossGeo...ar/geoka18.gif http://www.cebirsel.com/maths/ossGeo...r/geo_3.85.gif4. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen paralellerin toplamı bir kenar uzunluğuna eşittir.http://www.cebirsel.com/maths/ossGeo...r/geo_3.86.gifBir kenarı a olan ABC eşkenar üçgeninde http://www.cebirsel.com/maths/ossGeo...r/geo_3.87.gif |
Saat: 23:47 |
Telif Hakları vBulletin® v3.8.4 Copyright ©2000 - 2025, ve
Jelsoft Enterprises Ltd.'e Aittir.
Search Engine Optimisation provided by
DragonByte SEO v2.0.37 (Lite) -
vBulletin Mods & Addons Copyright © 2025 DragonByte Technologies Ltd.