![]() |
Gödel'in Eksiklik Teoremi
Gödel'in Eksiklik Teoremi Gödel'in çağdaşı olan ünlü matematikçi Hilbert, matematikteki tüm ispatların, belli bir yöntemle, yani aksiyomatik bir sistem vasıtasıyla, elde edilebileceğini düşünüyordu ve bu doğrultuda çalışmalarına başladı. Temel aritmetikteki tüm doğruları, aksiyomlarından türetebilirse, matematikteki tüm doğruları da bu aksiyomlardan elde edebilecekti. Gödel bunun olanaksızlığını gösterdi. Bunu kısaca şu şekilde yaptı: Bu önerme ispatlanamaz ifadesini [IMG]http://www.************/forum/images/smilies/msn_gift.gif[/IMG] aritmetik sisteminde formülize etti. Aynı şekilde G ifadenin değilini (Bu önerme ispatlanabilir) de formülize etti. Daha sonra, G ifadesinin aritmetik olarak doğruluğu hesaplanabilirse, G ifadesinin değilinin de doğruluğunun hesaplanabileceğini gösterdi. Ve Gödel buradan şu iki sonuca varmıştır:
İşin ilginç tarafı, bu G ifadesi sistemin içine bir aksiyom olarak yerleştirilse bile, yeni bir Gödel cümlesi çıkartılabilir. Yani ne kadar aksiyom eklersek ekleyelim, böyle bir sistemde doğruluğu ya da yanlışlığı ispatlanamayacak bir Gödel cümlesi bulunacaktır. |
Saat: 23:14 |
Telif Hakları vBulletin® v3.8.4 Copyright ©2000 - 2025, ve
Jelsoft Enterprises Ltd.'e Aittir.
Search Engine Optimisation provided by
DragonByte SEO v2.0.37 (Lite) -
vBulletin Mods & Addons Copyright © 2025 DragonByte Technologies Ltd.