Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Yaşamın İçinden > Bitkiler Dünyası
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 14 January 2009, 08:36
Banned
 
Kayıt Tarihi: 29 July 2008
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Arrow Yapraklar Ve Fotosentez





YAPRAKLAR VE FOTOSENTEZ
On yedinci yüzyılda yaşamış Belçikalı bir fizikçi olan Jan Baptista Van Helmont bilimsel deneylerinden birinde bir söğüt ağacının büyümesini gözlemledi ve çeşitli ölçümler yaptı. Ağacı önce tarttı, ardından 5 yıl sonra ikinci kez tekrar tarttı ve ağırlığını 75 kg artmış olarak buldu. Bitkinin içinde büyüdüğü kaptaki toprağı tarttığındaysa, bu 5 yıllık zaman içinde sadece birkaç gram azaldığını gördü. Fizikçi Van Helmont, bu deneyinde, söğüt ağacının büyüme sebebinin sadece saksıdaki toprak olmadığını ortaya çıkardı. Bitki büyümek için toprağın çok az bir kısmını kullandığına göre başka bir yerlerden besin alıyor olmalıydı.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
İşte 17. yüzyılda Van Helmont'un keşfetmeye çalıştığı bu olay, bazı aşamaları günümüzde dahi tam olarak anlaşılamamış olan fotosentez işlemidir. Yani bitkilerin kendi besinlerini kendilerinin üretmeleridir.
Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır.

YAPRAKLARIN GENEL YAPISI
Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir.
Öncelikle yaprakların dış yapılarını inceleyelim.
Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar.
Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu.

En soldaki resimde aşama aşama güneşe doğru hareketi görülen ve mini bir radar istasyonuna benzeyen kırlangıç otu çiçeği (ranunculus ficaria), diğer bütün bitkilerde olduğu gibi güneşin yönünü takip ederek döner. Bitki böylelikle güneş ışığından daha fazla faydalanabilecektir. Alttaki resimde görülen ayçiçekleri de güneşin hareketiyle kendi yönlerini değiştiren bitkilerdendir. Işığa karşı duyarlı yaprak hücreleri hemen yön belirleyerek güneşe doğru harekete geçerler.
Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir.
Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir.
Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir.
Yandaki resimde bir yaprağın enine kesiti görülmektedir. Yaprağın yapısı incelendiğinde her birinde çok detaylı tasarımlar olan dört tabaka ile karşılaşılacaktır. Detaya inilerek incelendiğinde bu tabakaların su geçirmeme, ışığı daha çok emme, solunumu kolaylaştırma gibi yaprağın ışığı daha iyi alması ve daha fazla fotosentez yapabilmesini sağlayacak özelliklere sahip oldukları görülecektir.
Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar.
Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde yaratılmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir.
Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını (porları) genişletir veya daraltırlar.
Tropik bölgelerdeki bitkilerin yapısı ile çöl ortamlarında yetişen bitkilerin genel yapısı resimlerde de görüldüğü gibi birbirlerinden çok farklıdır.
Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler.

KUSURSUZ BİR TASARIM: GÖZENEKLER
Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur.
Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur.
Dıştan bakıldığında kimi zaman sadece yeşil bir cisim olarak düşünülebilen yapraklardaki mikroskobik alanlarda, kusursuz bir tasarım söz konusudur. Bitkiler için son derece önemli yapılardan biri olan gözenekler de bu tasarımın çok önemli bir parçasıdırlar. Görevleri ısı ve su dönüşümünü sağlamak ve CO2'i atmosferden temin etmektir. Yandaki yaprak kesitinde de görüldüğü gibi genellikle yaprağın alt kısımlarında yer alan gözenekler, bitkinin su ihtiyacına göre açılıp kapanabilir olma özelliğine sahiptirler. Dış ortamdaki değişiklikler gözeneklerin hareketlerini belirleyen etkenlerdir.
Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir.
Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar.
İki kısımlı (dicot) ve tek
kısımlı (monocot) bitkilerde gözeneklerin özellikleri değişir. Bu iki tip bitkide gözeneklerin koruyucu hücreleri farklıdır. Bir çok monocot koruyucu hücresinin merkezi dar, ucu kalın olmasına rağmen, dicot koruyucu hücreleri fasulye şeklindedir. Her bir monocot koruyucu hücresi epidermis'teki özel bir hücre ile birleşmiştir. Gözeneklerin farklı koruyucu hücrelerinin sahip oldukları özellikler sayesinde her bir bitkiye gerekli karbondioksit sağlanır ve susuzluktan korunur.
Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.
Fakat bu problem de çözülmüştür. Sıcak bölgelerde yaşayan bazı bitkiler havadaki karbondioksidi yapraklarına daha verimli bir şekilde alan birer karbondioksit pompasına sahiptir ve, gözenekleri kapalı da olsa, yapraklarına karbondioksidi alabilmek için kimyasal pompalar kullanmaktadırlar. [Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Bu kimyasal pompaların bir süre yokluğu durumunda CO2 temin edilemediği için bitki besin üretemeyecek ve ölecektir. Bu da yapraklardaki bu kompleks pompaların zaman içinde ortaya çıkan raslantılarla oluşmasının imkansız olduğunun bir göstergesidir. Bitkilerdeki bu sistem de diğerleri gibi ancak bütün parçaları eksiksiz olduğunda fonksiyonlarını yerine getirebilmektedir. Dolayısıyla, bitkilerdeki gözeneklerin de tesadüfler sonucu evrimleşerek ortaya çıkmış olmaları ihtimal dışıdır. Son derece özel bir yapısı olan gözenekler de görevlerini en hassas biçimde yerine getirecek şekilde özel olarak tasarlanmışlar, yani yaratılmışlardır.
EVRİMCİLERE GÖRE YAPRAKLARIN OLUŞUMU
Görüldüğü gibi küçük yeşil bir cisme son derece kusursuz bir şekilde sığdırılmış kompleks yapılar vardır. Yapraklardaki bu kompleks sistem milyonlarca yıldır kusursuzlukla işlemektedir. Peki bu sistemler nasıl olup da bu kadar küçük bir alana sığdırılmışlardır? Yapraklardaki kompleks tasarım nasıl oluşmuştur? Bu kadar mükemmel ve örneksiz bir tasarımın kendi kendine oluşması mümkün müdür?
Bu sorular evrim teorisini savunanlara sorulacak olursa alınacak cevaplar her zamankilerden farklı olmayacaktır. Hiçbir mantığı olmayan, kendi içinde sürekli çelişen açıklamalarla çeşitli varsayımlar ortaya atacaklardır. Kurdukları hayali evrim senaryolarıyla sayısız çeşitlilikteki bitkinin, ağacın, çiçeğin, deniz bitkilerinin, otların, mantarların "nasıl ortaya çıktıkları" sorusuna cevap vermeye çalışacaklar, fakat başaramayacaklardır.
Sizin için gökten su indiren O'dur; içecek ondan, ağaç ondandır (ki) hayvanlarınızı onda otlatmaktasınız.
Onunla sizin için ekin, zeytin, hurmalıklar, üzümler ve meyvelerin her türlüsünden bitirir.
Şüphesiz bunda, düşünebilen bir topluluk için ayetler vardır.
(Nahl Suresi, 10-11)
Evrimcilerin, yaprakların oluşumu ile ilgili olarak ortaya attıkları teoriler incelendiğinde bunların son derece anlamsız, hatta gülünç denebilecek iddialarla dolu oldukları görülür. Bunlardan bir tanesine (Telome teorisine) göre yapraklar, bitki gövdesindeki sistemlerin defalarca tekrarlanan kompleks dallanma ve birleşmeleri ile gelişmiştir.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Sorular sorarak bu temelsiz iddiayı inceleyelim:
- Bu dallar niçin birleşme ve yassılaşma gereği duymuşlardır?
- Bu birleşme ve yassılaşma nasıl bir süreç sonucunda gerçekleşmiştir,
-Dallar ne tür tesadüfler sonucunda yapı ve tasarım olarak tamamen farklı yapıdaki yapraklara dönüşmüşlerdir?
-İlkel damarlı bitkilerden nasıl olup da binlerce, milyonlarca çeşitteki bitkiler, ağaçlar, çiçekler, otlar ortaya çıkmıştır?
Evrimcilerin bu soruların hiçbirisi hakkında mantıklı ve bilimsel bir cevapları yoktur. Evrimciler her konuda olduğu gibi bitkilerin varoluşu konusunda da bütünüyle hayal gücüne dayalı senaryolardan başka bir açıklama üretemezler.
Bu konudaki başka bir teori olan "Enation Teorisi"ne göreyse yapraklar, sözde bitki gövdesinden çıkan birtakım yapılardan ortaya çıkmışlardır.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Evrimcilerin bu iddialarını da yine sorular sorarak inceleyelim:
Nasıl olup da gövdenin belirli yerlerinde bir yaprak oluşturmak üzere çıkıntılı bir yapı oluşmuştur?
Bunlar daha sonra tomurcuklar nasıl yapraklara dönüşmüşlerdir? Üstelik de sayısız çeşide sahip kusursuz bir yapı olan yapraklara…
Biraz daha geriye gidelim. Bu yapıların çıktığı bitki gövdesi nasıl oluşmuştur?
Bunlara benzer soruların da evrimcilerce verilmiş hiçbir bilimsel cevapları yoktur.
Gerçekte her iki teorinin de anlatmak istediği hikaye şudur: Bitkiler evrimcilere göre, sözde tesadüfen gelişen olaylar sonucunda ortaya çıkmışlardır. Tesadüfen bitki gövdeleri, dallar oluşmuş, bir başka tesadüf olmuş klorofil kloroplastın içinde var olmuş, başka tesadüflerle yapraktaki tabakalar oluşmuş, tesadüfler tesadüfleri kovalamış ve sonunda kusursuz ve son derece özel yapısıyla yapraklar ortaya çıkmıştır.
Bu arada yaprakta tesadüfen oluştuğu iddia edilen bu yapıların hepsinin aynı anda ortaya çıkması gerektiği de göz ardı edilmemesi gereken bir gerçektir. Evrimcilere göre yapraktaki mekanizmaların tümü kendi kendine gelişen tesadüflerle ve zaman içinde yavaş yavaş ortaya çıkmıştır. Yine aynı evrimci mantığın devamı, kullanılmayan organların ya da sistemlerin kaybolmasını öngörmektedir. Yapraktaki düzeneklerin hepsi birbirine bağlı olduğundan, bir tanesinin tesadüfler sonucu ortaya çıkmış olması bir anlam ifade etmeyecektir. Çünkü evrimci mantığın ikinci aşamasına göre bu düzenek, işe yaramadığından dolayı ortadan kalkacaktır. Bu yüzden bitkinin yaşamını sürdürebilmesi için kökündeki, dallarındaki ve yapraklarındaki kompleks sistemlerin hepsinin aynı anda var olması gerekmektedir.
Yeryüzündeki her canlıda olduğu gibi bitkilerde de tam anlamıyla kusursuz sistemler kurulmuştur ve ilk yaratıldıkları andan itibaren özelliklerinde hiçbir değişiklik olmadan günümüze kadar gelmişlerdir. Yapraklarını dökmelerinden, kendilerini güneşe çevirmelerine, yeşil renklerinden, gövdelerindeki odunsu yapıya, köklerinin varlığından meyvelerinin oluşmasına kadar olan tüm yapıları örneksizdir. Daha iyi sistemlerin oluşturulması hatta benzerlerinin oluşturulması (mesela fotosentez işlemi) günümüz teknolojisiyle mümkün bile değildir.
Bu komplekslik de yaprakların tesadüfen oluşamayacağının delillerinden biridir. Yapraklar özel olarak bitkilerin besin üretmesi, solunum yapmaları gibi ihtiyaçlar için tasarlanmış yapılara sahiptirler. Özel bir tasarımın varlığı, bir tasarlayıcının varlığını kanıtlar. Tasarımdaki detaylar ve kusursuzluk da tasarımcının aklını, bilgisini ve sanatının gücünü bize tanıtır. Yaprakları en mükemmel tasarımlarıyla yaratan hiç kuşkusuz ki tüm alemlerin Rabbi olan Allah'tır.
FOTOSENTEZ MUCİZESİ
Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır.
Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir.
İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur.
Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur.
SIR DOLU BİR FABRİKA: KLOROPLAST
Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir.
Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA, ribozomlar ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir.
Yeşil bitkilerde fotosentez işlemini yapan, bitki hücrelerinde bulunan kloroplast adı verilen organellerdir. Yanda büyütülmüş resmi görülen kloroplast, gerçekte milimetrenin binde biri kadar bir büyüklüğe sahiptir. İçinde fotosentez işlemini yürüten pek çok yardımcı organel vardır. Çok aşamalı olarak gerçekleşen ve bazı aşamaları henüz çözülememiş olan fotosentez işlemi bu mikroskobik fabrikalarda, büyük bir hızda gerçekleşmektedir.
Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır.
AYDINLIK EVRE
Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik dalga boylarındaki ışınımların birleşimidir ve bu dalgaların enerji yükü birbirinden farklıdır. Güneş ışığındaki dalgaların ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. Bitkiler fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların çoğu zaman yeşil gözükmesinin nedeni de budur.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır.
Güneş, dünyanın enerji kaynağıdır ve devamlı olarak ışın yayar. Bu ışınlardan, canlıların "görünür ışık" olarak algılayabildiği ışın aralığı bitkiler tarafından kullanılır. Resimde görülen kısa dalga boyları (mavi ışık), uzun dalga boylarından (kırmızı ışık) daha yüksek enerjilidir. Bitkiler de fotosentez yaparken daha yüksek enerjiye sahip olan uzun dalga boyuna sahip olan ışık aralığını kullanırlar.
"Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir.
Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır.
Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Yapraklardaki klorofil maddesi, kloroplastlardaki thylakoid adı verilen yapının içinde bulunur. Yukarıda şematik anlatımı görülen thylakoidler incelenirken, bu yapının milimetrenin binde biri büyüklüğünde bir organel olan kloroplastın çok küçük bir parçası olduğu unutulmamalıdır. Thylakoidlerdeki bu detaylı tasarımın tesadüfen oluşması elbette ki imkansızdır. Evrendeki her şey gibi yaprakları da, Allah yaratmıştır.
Elektron akışının sonunda, suyun ayrışmasından sonra ortaya çıkan protonlar ve elektronlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Elektronlar elektron taşıma sistemiyle taşınırken, thylakoid zarı boyunca bir proton eğimi oluşur. Eğimin potansiyel enerjisi ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirmek için kullanılır. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir.
Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır.
KARANLIK EVRE
Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karbondioksiti organik karbona indirgemek için kullanılır.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Karanlık evrenin nihai ürünü, hücrenin ihtiyaç duyduğu diğer organik bileşikler için başlangıç malzemesi olarak kullanılacaktır.
Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır.
Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır.
Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar.
Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider.
FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA
ÖZEL OLARAK AYARLANMIŞTIR

Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle düzenlenmiş olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır.
Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim:
Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler?
Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır.
FOTOSENTEZ İŞLEMİNİN AŞAMALARI
Güneş ışığı yaprağın üzerine düştüğünde yapraktaki tabakalar boyunca ilerler. Yaprak hücrelerindeki kloroplast organellerinin içindeki klorofiller bu ışığın enerjisini kimyasal enerjiye çevirir. Bu kimyasal enerjiyi elde eden bitki ise bunu hemen besin elde etmekte kullanır. Bilimadamlarının birkaç cümlede özetlenen bu bilgiyi elde etmeleri 20. yüzyılın ortalarını bulmuştur. Fotosentez işlemini anlamak için sayfalarca reaksiyon zincirleri yazılmaktadır. Fakat hala bu zincirlerde bilinmeyen halkalar mevcuttur. Oysa bitkiler yüz milyonlarca yıldır bu işlemleri hiç şaşmadan gerçekleştirip dünyaya oksijen ve besin sağlamaktadırlar.
Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır:
Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır.
Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Kısacası fotosentez işleminin gerçekleşebilmesi için şu anki şartların olması zorunludur. İşte bu noktada akla gelebilecek bir soruyu daha değerlendirmekte fayda vardır:
Zaman içinde fotosentez işleminin sıralamasında ya da moleküllerin görevinde herhangi bir değişiklik olabilir miydi?
Bu soruya, doğadaki hassas dengelerin tesadüfler sonucunda oluştuğunu iddia eden evrim savunucularının vereceği cevaplardan bir tanesi, "başka türlü bir ortam olsaydı, canlılar o ortamlara da uyum sağlayacakları için bitkiler de o ortama göre fotosentez yapabilirlerdi" olacaktır. Oysa bu tamamen yanlış bir mantıktır. Çünkü bitkilerin fotosentez yapabilmeleri için güneşin yaydığı ışıkların şu anki uyum içinde olmaları gerekmektedir. Bu mantığın yanlış olduğunu gerçekte bir evrimci olan astronom George Greenstein da şu şekilde belirtmektedir:
Belki insan burada bir tür adaptasyonun gerçekleştiğini düşünebilir: Bitkinin yaşamının Güneş ışığının özelliklerine uyum sağladığını varsayan moleküller ışığın çok belirli bazı renklerini absorbe edebilirler. Işığın absorbe edilmesi işlemi, moleküllerin içindeki elektronların yüksek enerji seviyelerine olan duyarlılıklarıyla ilgilidir ve hangi molekülü ele alırsanız alın, bu işi gerçekleştirmek için gereken enerji aynıdır. Işık, fotonlardan oluşur ve yanlış enerji seviyesinde foton, hiçbir şekilde absorbe edilemez... Kısacası yıldızların fiziği ile, moleküllerin fiziği arasında çok iyi bir uyum vardır. Bu uyum olmasa, yaşam imkansız olurdu.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Tekrar önemle belirtmek gerekirse; bitkilerin fotosentez yapabilmeleri için güneşin yaydığı belirli aralıktaki ışığın varlığı şarttır. Yaşam için zorunlu olan bu uyum hiçbir şekilde rastlantılarla açıklanamayacak kusursuzlukta bir uyumdur. Yeryüzündeki her şeye hakim olan ve üstün bir aklın sahibi olan Allah, tüm bunları birbirine uygun olarak yaratmıştır.
FOTOSENTEZ OLAYI TESADÜFEN OLUŞAMAZ
Bütün bu apaçık gerçeklere rağmen yine de evrim teorisini savunmaya devam edenler için, sorular sorarak bu sistemin tesadüfen oluşamayacağını bir kere daha görelim. Boyutu mikroskobik ölçülerle tanımlanan bir alanda kurulmuş bu örneksiz mekanizmayı var eden kimdir? Öncelikle böyle bir sistemi bitki hücrelerinin plandığını yani bitkilerin düşünerek planlar yaptığını varsayabilir miyiz? Elbette ki böyle bir şeyi varsayamayız. Çünkü, bitki hücrelerinin tasarlaması, akletmesi gibi bir şey söz konusu değildir. Hücrenin içine baktığımızda gördüğümüz kusursuz sistemi yapan hücrenin kendisi değildir. Peki öyleyse bu sistem düşünebilen yegane varlık olan insan aklının bir ürünü müdür? Hayır değildir. Milimetrenin binde biri büyüklüğünde bir yere yeryüzündeki en inanılmaz fabrikayı kuranlar insanlar da değildir. Hatta insanlar bu mikroskobik fabrikanın içinde olan bitenleri gözlemleyememektedirler bile.
Bu gibi soruların cevaplarının niçin "hayır" olduğu, evrimcilerin iddialarıyla birlikte incelendiğinde, bitkilerin nasıl ortaya çıktığı konusu daha iyi açıklığa kavuşacaktır.
Evrim teorisi bütün canlıların aşama aşama geliştiğini, basitten komplekse doğru bir gelişim olduğunu iddia eder. Fotosentez sistemindeki mevcut parçaları belli bir sayıyla sınırlayabildiğimizi varsayarak bu iddianın doğru olup olmadığını düşünelim. Örneğin fotosentez işleminin gerçekleşmesi için gerekli olan parçaların sayısının 100 olduğunu varsayalım (gerçekte bu sayı çok daha fazladır). Varsayımlara devam ederek, bu 100 parçanın bir iki tanesinin evrimcilerin iddia ettikleri gibi tesadüfen, kendi kendine oluştuğunu varsayalım. Bu durumda geriye kalan parçaların oluşması için milyarlarca yıl beklenmesi gerekecektir. Oluşan parçalar bir arada bulunsalar bile diğerleri olmadığı için bir işe yaramayacaklardır. Tek biri olmadığında diğerleri işlevsiz olan bu sistemin diğer parçaların oluşumunu beklemeleri imkansızdır. Dolayısıyla canlılara ait tüm sistemler gibi, karmaşık bir sistem olan fotosentez de evrimin öne sürdüğü gibi, zaman içinde, tesadüflerle, yavaş yavaş oluşan parçaların art arda eklenmesiyle meydana gelmesi akıl ve mantıkla bağdaşan bir iddia değildir.
Bu iddianın çaresizliğini fotosentez işleminde gerçekleşen bazı aşamaları kısaca hatırlayarak görebiliriz. Öncelikle fotosentez işleminin gerçekleşebilmesi için mevcut bütün enzimlerin ve sistemlerin aynı anda bitki hücresinde bulunması gereklidir. Her işlemin süresi ve enzimlerin miktarı tek bir seferde en doğru biçimde ayarlanmalıdır. Çünkü gerçekleştirilen reaksiyonlarda oluşabilecek en ufak bir aksaklık, örneğin işlem süresi, reaksiyona giren ısı veya hammadde miktarında küçük bir değişiklik olması, reaksiyon sonucunda ortaya çıkacak ürünleri bozacak ve yararsız hale getirecektir. Bu sayılanların herhangi bir tanesinin olmaması durumunda da sistem tamamen işlevsiz olacaktır.
Bu durumda akla bu işlevsiz parçaların, sistemin tümü oluşana kadar nasıl olup da varlıklarını sürdürdükleri sorusu gelecektir. Ayrıca boyut küçüldükçe, o yapıdaki sistemin üzerindeki aklın ve mühendisliğin kalitesinin arttığı da bilinen bir gerçektir. Bir mekanizmadaki boyutun küçülmesi bize o yapı üzerinde kullanılan teknolojinin gücünü gösterir. Günümüz kameralarıyla seneler önce kullanılan kameralar arasında bir karşılaştırma yapıldığında bu gerçek daha net görülecektir. Bu gerçek, yapraklardaki kusursuz yapının önemini daha da arttırmaktadır. İnsanların büyük fabrikalarda dahi yapamadıkları fotosentez işlemini bitkiler nasıl olup da bu mikroskobik fabrikalarında gerçekleştirmektedirler?
İşte bu ve benzeri sorular evrimcilerin hiçbir tutarlı açıklama getiremedikleri sorulardır. Buna karşın, çeşitli hayali senaryolar üretirler. Üretilen bu senaryolarda başvurulan ortak taktik, konunun demagojiler ve kafa karıştırıcı teknik terim ve anlatımlarla boğulmasıdır. Olabildiğince karışık terimler kullanarak bütün canlılarda çok açık görülen bir gerçeği, "Yaratılış Gerçeği"ni örtbas etmeye çalışırlar. Neden ve nasıl gibi sorulara cevap vermek yerine, konu hakkında ayrıntılı bilgiler ve teknik kavramlar sıralayıp sonuna bunun evrimin bir sonucu olduğunu eklerler.
Görmüyorlar mı; Biz, suyu çorak toprağa sürüyoruz da onunla ekin bitiriyoruz; ondan hayvanları,
kendileri yemektedir? Yine de görmüyorlar mı?
(Secde Suresi, 27)
Bununla birlikte en koyu evrim taraftarları bile, çoğu zaman bitkilerdeki mucizevi sistemler karşısında hayretlerini gizleyememektedirler. Buna örnek olarak Türkiye'nin evrimci profesörlerinden Ali Demirsoy'u verebiliriz. Prof. Demirsoy, fotosentezdeki mucizevi işlemleri vurgulayarak, bu kompleks sistemin karşısında şöyle bir itirafta bulunmaktadır:
Fotosentez oldukça karmaşık bir olaydır ve bir hücrenin içerisindeki organelde ortaya çıkması olanaksız görülmektedir. Çünkü tüm kademelerin birden oluşması olanaksız, tek tek oluşması da anlamsızdır.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Fotosentez işlemindeki bu kusursuz mekanizmalar şimdiye kadar gelmiş geçmiş bütün bitki hücrelerinde vardır. En sıradan gördüğünüz bir yabani ot bile bu işlemi gerçekleştirebilmektedir. Reaksiyona her zaman aynı oranda madde girer ve çıkan ürünler de hep aynıdır. Reaksiyon sıralaması ve hızı da aynıdır. Bu istisnasız bütün fotosentez yapan bitkiler için geçerlidir.
Bitkiye akletme, karar verme gibi vasıflar vermeye çalışmak elbette ki mantıksızdır. Bunun yanı sıra bütün yeşil bitkilerde var olan ve kusursuz bir şekilde işleyen bu sisteme "tesadüfler zinciri ile oluştu" şeklinde bir açıklama getirmek de her türlü mantıktan uzak bir çabadır.
İşte bu noktada karşımıza apaçık bir gerçek çıkar. Olağanüstü kompleks bir işlem olan fotosentezi üstün güç sahibi olan Allah yaratmıştır. Bu mekanizmalar bitkiler ilk ortaya çıktıkları andan itibaren vardır. Bu kadar küçük bir alana yerleştirilmiş olan bu kusursuz sistemler bize kendilerini tasarlayanın gücünü gösterirler.
FOTOSENTEZİN SONUÇLARI
Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir.
Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir.
Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur.
Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir.56
Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar.
Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır.
BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR
Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir.
Yeryüzündeki Ekolojik Dengeyi Sağlayanlar Bitkilerdir
Bitkiler, yeryüzünde ekolojik dengenin sağlanmasında en önemli faktörlerdendir. Bunu bir karşılaştırma yaparak rahatlıkla görebiliriz. Örneğin yeryüzündeki tüm canlılar havadan oksijen alıp, atmosfere sadece karbondioksit, ısı ve su buharı verirler. Bunun yanısıra fabrikalarda yapılan üretim ve araç kullanımı gibi işlemler sonucunda da belli miktarda karbondioksit ve ısı havaya bırakılır. Yeşil bitkilerse bütün canlıların aksine havadan karbondioksit ve ısı alırlar. Bu iki maddeyi kullanarak fotosentez yapar ve havaya sürekli olarak oksijen verirler. Böyle hassas bir dengenin tesadüfen oluştuğunu iddia etmek elbette ki akla ve bilime uygun bir iddia olmayacaktır.
Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi?
Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir yaratılış harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir.
Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak var edilmiştir. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar.
Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur.

Meyvelerin ve sebzelerin lezzetleri, kokuları ve tadları düşünüldüğünde akla böyle bir çeşitliliğin nasıl ortaya çıktığı sorusu gelecektir. Aynı topraktan, aynı suyu ve mineralleri kullanarak, aynı tadı ve kokuyu hiç şaşmadan tutturan elbette ki üzümlerin, karpuzların, kavunların, kivilerin, ananasların kendileri değildir. Bu benzersiz lezzet, görünüş ve tad onlara Allah tarafından verilmektedir.
Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.
Karpuzların çekirdeklerinin dizilişlerinde de bir hata görülmez. Her bir çekirdeğin içine o karpuzun binlerce yıl sonraki nesillerine ulaşacak bilgi kodlanmıştır. Her çekirdek özel, koruyucu bir kabukla kaplıdır. Bu, içindeki bilginin bozulmasını engellemeye yönelik hazırlanmış mükemmel bir tasarımdır. Kabuk çok sert değil, çok yumuşak da değil, ideal bir sertlikte ve esnekliktedir. Kabuktan sonra çekirdeğin içinde ikinci bir kat vardır. Kabuğun alt ve üst parçalarının yapışma yerleri bellidir. Bu yapışma yerleri çekirdeklerin tutunabilmesi için özel olarak yapılmıştır. Çekirdek, bu yapı sayesinde sadece uygun nem ve sıcaklığa kavuşunca hemen açılır. Çekirdeğin içindeki o dümdüz bembeyaz bölüm kısa bir süre sonra çimlenerek, yemyeşil bir yaprağa dönüşüverir.
Karpuzun bir de kabuğunun yapısını düşünelim. Bu pürüzsüz kabuğu ve kabuğun üstündeki cilalı yapıyı oluşturanlar hep hücrelerdir. Bu pürüzsüz cilalı yapının ortaya çıkması için, hücrelerin her birinin kabuğun yapısındaki mumsu maddeyi aynı seviyede salgılamaları gerekmektedir. Ayrıca kabuğu pürüzsüz ve yuvarlak yapan da karpuz hücrelerinin dizilişindeki mükemmelliktir. Bunu sağlayabilmek için hücrelerin her birinin yer alması gereken noktayı bilmesi gerekir. Aksi takdirde bu pürüzsüzlük, karpuzun dış yapısındaki bu kusursuz yuvarlaklık oluşmayacaktır. Görüldüğü gibi karpuzu oluşturan hücreler arasında kusursuz bir uyum vardır.
Bu şekilde düşünerek yeryüzündeki bitkilerin tümünü inceleyebiliriz. Bu incelemenin sonunda elde ettiğimiz sonuç bitkilerin insanlar ve tüm canlılar için özel olarak yaratılmış oldukları sonucu olacaktır.
Alemlerin Rabbi olan Allah tüm besinleri canlılar için var etmiştir ve bunları, her birinin tadı, kokusu, faydası farklı olacak şekilde yaratmıştır:
Yerde sizin için üretip-türettiği çeşitli renklerdekileri de (faydanıza verdi). Şüphesiz bunda, öğüt alıp düşünen bir topluluk için ayetler vardır. (Nahl Suresi, 13)
Ve birbiri üstüne dizilmiş tomurcuk yüklü yüksek hurma ağaçları da. Kullara rızık olmak üzere. Ve onunla (o suyla) ölü bir şehri dirilttik. İşte (ölümden sonra) diriliş de böyledir. (Kaf Suresi, 10-11)
BİTKİLER SERİNDİR, AMA NEDEN?
Aynı yerde bulunan bitki ve bir taş parçası, eşit miktarda güneş enerjisi almalarına rağmen aynı derecede ısınmazlar. Güneş altında kalan her canlıda mutlaka olumsuz bir etki oluşur. Öyleyse bitkilerin sıcaktan minimum derecede etkilenmelerini sağlayan nedir? Bitkiler bunu nasıl başarırlar? Muazzam bir sıcaklıkta, bütün yaz boyunca yaprakları güneşin altında kavrulmasına rağmen bitkilere neden hiçbir şey olmamaktadır? Ayrıca bitkiler kendi bünyelerindeki ısınmanın haricinde, dışarıdan da ısı alarak dünyadaki ısı dengesini de sağlarlar. Bu ısı tutma işlemini yaparken kendileri de bu sıcağa maruz kalırlar. Peki gittikçe artan bu sıcaktan etkilenmek yerine, bitkiler nasıl olup da dışarının da ısısını almaya devam edebilmektedirler?
Yapıları itibariyle sürekli güneş altında olan bitkiler, doğal olarak diğer canlılara oranla daha fazla miktarda suya ihtiyaç duyarlar. Bitkiler aynı zamanda yapraklarında oluşan terleme vasıtasıyla da sürekli su kaybederler. Daha önceki bölümlerde de değinildiği gibi bu su kaybını önlemek için, yaprakların güneşe dönük olan üst yüzleri çoğunlukla "kütiküla" adı verilen bir tür su geçirmez, koruyucu cilayla örtülüdür. Bu sayede yaprakların üst yüzeylerindeki su kaybı önlenmiş olur.
Peki ya alt yüzleri? Bitki bu bölümden de su kaybettiği için gaz alış-verişini sağlamakla görevli özel deri hücreleri olan gözenekler genellikle yaprağın alt yüzünde bulunurlar. Gözeneklerin açılıp kapanması bitki tarafından karbondioksit alıp oksijen vermeye yetecek, ancak su kaybına yol açmayacak biçimde denetlenir.
Bunların yanı sıra bitkiler ısıyı farklı şekillerde dağıtırlar. Bitkilerde iki önemli ısı dağıtım sistemi bulunmaktadır. Bunlardan birincisi, yaprağın ısısı eğer çevrenin ısısından daha fazlaysa, hava dolaşımının yapraktan dış ortama doğru olmasıdır. Isı naklinden kaynaklanan hava değişimi, sıcak havanın soğuk havadan daha az yoğun olması nedeniyle, havanın yükselmesine dayanır. Bu yüzden yaprakların yüzeyinde ısınan hava yükselir ve yüzeyden ayrılır. Soğuk hava daha yoğun olduğu için yaprağın yüzeyine doğru iner. Böylece sıcaklık azaltılmış ve yaprak serinlemiş olur. Bu işlem yaprağın yüzey ısısı çevredeki ısıdan yüksek olduğu müddetçe devam eder. Çok kuru koşullarda yani çöllerde dahi bu durum değişmez.

Yandaki resimde Alchemilla adlı bitkinin aşırı nemli ortam nedeniyle yaptığı terleme görülmektedir. Bu tarz ortamlarda bitkiler hem ısıyı dağıtarak serinlemek hem de nem dengesini ayarlamak için phloem öz suyunu yapraklar yoluyla dışarı akıtırlar. Bu işlem sonucunda bitkiler havayı nemlendirmiş olurlar.
Bitkilerdeki ısı dağıtım sistemlerinden diğeri de yapraklardan su buharı verilerek terlemenin sağlanmasıdır. Bu terleme sayesinde su buharlaşırken bitkinin serinlemesi de sağlanmış olur.
Bu dağıtım sistemleri bitkilerin yaşadıkları ortamın şartlarına uygun olacak şekilde ayarlanmıştır. Her bitki neye ihtiyacı varsa o sisteme sahiptir. Son derece karmaşık bir yapısı olan bu sistemin dağılımı tesadüfen gerçekleşmiş olabilir mi? Bu sorunun cevabını verebilmek için çöl bitkilerini ele alalım. Çöllerdeki bitkilerin yaprakları genelde çok kalındır. Suyu buharlaştırmaktan daha çok, muhafaza etme yönünde dizayn edilmişlerdir.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Bu bitkiler için ısı dağıtma işlemini buharlaşma ile gerçekleştirmek ölümcül bir sonuç getirecektir. Çünkü çöl ortamında kaybedilen suyun telafisi mümkün değildir. Görüldüğü gibi bu bitkiler ısılarını her iki yolla da dağıtabilecekken sadece bu yollardan birini, üstelik de yaşamaları için tek geçerli olan yolu kullanmaktadırlar. Çünkü tasarımları çöl ortamına göre yapılmıştır. Bunun tesadüflerle açıklanması ise mümkün değildir.
Bitkilerin sahip oldukları bu serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Öğle saatlerinde bir dakika kadar direkt olarak alınan güneş ışığı, bir santimetrekarelik yaprak yüzeyinin ısısını 37oC'ye kadar yükseltebilir. Bitki hücreleriyse, bünyelerindeki sıcaklık 50-60oC'ye çıktığında ölmeye başlarlar, yani bitkinin ölmesi için öğle vakti 3 dakika kadar güneş ışığı alması yeterlidir. İşte bitkiler öldürücü sıcaklıklardan bu iki mekanizma sayesinde korunabilirler.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Bitkilerin ısı dağıtımında kullandıkları buharlaşma olayı aynı zamanda atmosferdeki su buharı dengesi açısından da büyük bir önem taşır. Çünkü bitkilerdeki bu buharlaşma, yüksek miktarlardaki suyun düzenli olarak atmosfere ulaştırılmasını sağlar. Bitkilerin bu faaliyetleri bir nevi su mühendisliği olarak da nitelendirilebilir. Bin metrekarelik ormanlık bir alandaki ağaçlar 7.5 ton suyu rahatlıkla havaya verebilirler. Bu muazzam bir rakamdır. Bu özellikleriyle bitkiler topraktaki suyu vücutlarından geçirerek atmosfere ulaştıran dev su pompaları gibidirler.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Bu son derece önemli bir görevdir. Şayet, bu özellikleri olmasaydı, suyun yer ile gök arasındaki çevrimi bugünkü gibi gerçekleşemeyecekti, ki bu da yeryüzündeki dengelerin bozulmasına neden olacaktı.
Dış yüzeyleri odunsu ve kuru bir maddeyle kaplı olmasına rağmen, bitkiler bünyelerinden tonlarca su geçirirler. Bu suyu topraktan alırlar ve ileri teknolojiyle çalıştırdıkları kendi fabrikalarında birtakım yerlerde kullandıktan sonra, aldıkları suyun büyük bir bölümünü arıtılmış su olarak doğaya verirler, başka bir deyişle trilyonlarca tonluk suyu otomasyon düzenleriyle kontrollü olarak topraktan alıp, arıttıktan sonra kendilerine özgü sistemleriyle doğaya adeta pompalarlar. Bunu yaparken aynı zamanda aldıkları suyun bir kısmını da, besin üretiminde hidrojeni kullanmak amacıyla parçalarlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Bizim yapraklardaki terleme ya da ağaçların bulunduğu ortamdaki nemlilik olarak nitelendirdiğimiz olaylar, aslında yeryüzünde yaşamın devamlılığı açısından hayati önem taşıyan bu faaliyetlerin bir sonucu olarak gerçekleşir.
Bitkilerin bu işlemlerinde de karşımıza çıkan, tek bir parçası çekilip alınsa anında felç olacak ve çalışamayacak mükemmellikte bir sistemdir. Hiç kuşkusuz ki bu düzeni eksiksiz biçimde bitkilere yerleştiren Rahman ve Rahim olan, her türlü yaratmayı bilen Allah'tır:
O Allah ki, Yaratandır, (en güzel bir biçimde) kusursuzca var edendir, 'şekil ve suret' verendir. En güzel isimler O'nundur. Göklerde ve yerde olanların tümü O'nu tesbih etmektedir. O, Aziz, Hakim'dir. (Haşr Suresi, 24)
EN KÜÇÜK TEMİZLİK CİHAZI, YAPRAK
Bitkilerin diğer canlılara verdiği hizmetler, sadece havaya oksijen ve su vermekle kısıtlı değildir. Yapraklar aynı zamanda son derece gelişmiş bir arıtma ve temizleme cihazı gibi faaliyet gösterirler. Günlük yaşamımızda sıkça kullandığımız temizlik cihazları, konunun uzmanları tarafından uzun süren çalışmalar sonucunda, yoğun emek ve para harcanarak üretilirler ve faaliyete geçirilirler. Bunların kullanımları süresince ve kullanım sonrasında pek çok teknik desteğe ve bakıma ihtiyaç vardır. Üretimlerinin sonunda ortaya çıkardıkları atık maddeler ise ayrı bir sorundur. Bunlar temizlik aletleri hakkında oldukça özet bilgilerdir. Bunlardan başka günlük olarak ortaya çıkan aksamalar ya da bozukluklar, bunlar için gerekli olan eleman ve alet takviyeleri, ihtiyaçlara göre yapılan yenilemeler gibi pek çok işlem de gerekecektir.
Görüldüğü gibi küçük bir arıtma cihazında bile yüzlerce detaya dikkat etmek gerekir. Oysa bu cihazlarla aynı işi yapan bitkiler sadece su ve güneş ışığı karşılığında, aynı temizleme hizmetini daha kaliteli ve garantili bir biçimde verirler. Üstelik atık madde diye bir sorunları da yoktur, çünkü onların havayı temizledikten sonra ürettikleri atık maddeler, tüm canlıların temel ihtiyacı olan oksijendir!
Ağaçların yaprakları, havadaki kirletici maddeleri yakalayan mini filtrelere sahiptir. Yaprak üzerinde gözle görülmeyen binlerce tüy ve gözenekler vardır. Gözenekler tanecikler halindeki havayı kirleten maddeleri tutarlar ve sindirilmek üzere bitkinin diğer bölümlerine gönderirler. Yağmur yağınca da bu maddeler su ile toprağa ulaşırlar. Bu çok kalın bir madde değildir. Yaprak üzerindeki bu maddeler sadece bir film kalınlığındadırlar; fakat yeryüzünde milyonlarca yaprak olduğu düşünülürse, yapraklar tarafından tutulan kirli madde miktarının küçümsenemeyecek kadar çok olduğu görülür. Örneğin 100 yaşındaki bir kayın ağacının yaklaşık 500 bin tane yaprağı vardır. Bu yaprakların tuttuğu kir miktar tahminlerin çok ötesindedir. Bir dönüm içindeki çınar ağaçları yaklaşık 3.5 ton, çam ağaçları ise yaklaşık 2.5 ton kirletici maddeyi tutabilirler. Tutulan bu maddeler ilk yağmurla birlikte toprağa geri dönerler. Bir yerleşim alanından 2 km uzaklıkta bulunan bir orman havasının, yerleşim alanının havasına oranla %70 oranında daha az toz parçacıkları içerdiği görülmüştür. Hatta ağaçlar yapraksız oldukları kış dönemlerinde bile havadaki tozları %60 oranında filtre ederler.
Ağaçlar mevcut yaprak ağırlıklarının 5-10 katına kadar toz tutabilirler, ağaçlı bir alandaki bakteri oranı ile ağaçsız bir alandaki bakteri miktarları oldukça büyük bir farklılık gösterir.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] Bunlar son derece önemli rakamlardır.
Yapraklarda gerçekleşen olayların hepsi başlı başına birer mucize niteliğindedir. Mikro seviyede tasarlanmış bir fabrika gibi mükemmel bir plan ile oluşturulan yeşil bitkilerdeki bu sistemler alemlerin Rabbi olan Allah'ın yaratmasındaki kusursuzluğun delilleridir ve yüz binlerce yıldır hiçbir değişiklik ya da hiçbir bozukluk olmadan günümüze kadar aynı mükemmellikte gelmişlerdir.
HERKES İÇİN TANIDIK BİR MANZARA: YAPRAK DÖKÜMÜ
Bitkiler için -özellikle de besin üretiminin yapıldığı yapraklar için - güneş ışığı çok önemlidir. Sonbaharın gelmesiyle birlikte havalar soğumaya, gündüzler kısalmaya başlar ve dünyaya gelen güneş ışığında azalma olur. Bu azalma bitkide değişikliklere sebep olur ve yapraklarda yaşlanma programı yani yaprak dökümü başlar.
Ağaçlar yapraklarını dökmeden önce, yapraktaki bütün besleyici maddeleri emmeye başlarlar. Amaçları potasyum, fosfat, nitrat gibi maddelerin düşen yapraklarla birlikte yok olmasını engellemektir. Bu maddeler, ağaç kabuğunun katmanlarının ve gövdenin ortasından geçen iliğe yönelir ve burada depolanırlar. İlikte toplanmaları bu maddelerin ağaç tarafından kolay emilmesini sağlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]


İlk resim; yapraklar döküldüğü zaman her biri ardında iz bırakır. Hemen ardından bu iz herhangi bir enfeksiyonun oluşmasını engelleyen su geçirmeyen, mantar gibi bir tabakayla kaplanır.
Yaprak dökümü ağaçlar için bir zorunluluktur çünkü soğuk havalarda topraktaki su gitgide katılaşır ve emilmesi zorlaşır. Buna karşın yapraklardaki terleme havanın soğumasına rağmen devam etmektedir. Suyun azaldığı bir dönemde sürekli terleme yapan yaprak, bitki için fazlalık olmaya başlamıştır. Zaten yaprağın hücreleri soğuk kış günlerinde don ile karşılaşıp parçalanacaktır. Bu yüzden ağaç erken davranıp kış gelmeden yapraktan kurtulur, böylece zaten kıt olan su rezervlerini boş yere kullanmamış olur.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Sadece fiziksel bir işlem gibi görünen yaprak dökümü aslında pek çok kimyasal olayın arka arkaya gelmesiyle gerçekleşir.
Yaprak ayasında yer alan hücrelerde, ışığa duyarlı ve bitkilere renk veren moleküller yani "fitokromlar" vardır. Bitkinin, gecelerin süresinin uzadığını ve böylece yapraklara daha az güneş ışığı gittiğini fark etmesini sağlayan işte bu moleküllerdir. Fitokromlar bu değişimi algıladıklarında yaprağın içinde çeşitli değişimlere sebep olurlar ve yaprağın yaşlanma programını başlatırlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Yapraklardaki yaşlanmanın ilk işaretlerinden biri, yaprak ayası hücrelerindeki etilen üretiminin başlamasıdır. Etilen gazı yaprağa yeşil rengini veren klorofilin yıkımını başlatır yani ağaç yapraklarındaki klorofili geri çeker. Yaprak dökülmesini geciktiren bir büyüme hormonu olan oksin maddesinin üretimini engelleyen de etilen gazıdır. Klorofilin yıkımının başlamasıyla birlikte yaprak güneşten daha az enerji alır ve daha az şeker üretir. Ayrıca o güne kadar baskı altına alınmış, yapraklardaki sıcak renklerin oluşmasına sebep olan karotenoidler kendilerini gösterirler ve bu şekilde yapraklarda renk değişimi başlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Soldaki resimde yaprağın düştüğü yerden çıkan yaprak sapının tabanını gösteren bir akçaağaç dalının boyuna kesiti görülmektedir. Mikroskop altında alınan diğer görüntülerde ise, yaprağın düşmesi sırasında gerçekleşen olaylar gösterilmektedir. Sağ resimde yaprak düştükten sonra dalın mikroskop altındaki görüntüsü, sağ alt resimde ise yaprak düşmeden önceki durum görülmektedir. Yaprak düşmeden önce sapın taban ucunun karşısındaki ince duvarlı hücrelerden oluşan özel bir tabaka aktif hale gelir. Daha sonra bu hücreler kendilerini yok ederler ve yaprak düşer.
Bir süre sonra etilen gazı yaprağın her tarafına yayılır ve yaprak sapına geldiğinde burada bulunan küçük hücreler şişmeye başlayıp, sapta bir gerginleşmeye neden olurlar. Yaprak sapının gövdeye bağlandığı bölümde bulunan hücrelerin miktarı artar ve özel enzimler üretmeye başlarlar. İlk olarak selülaz enzimleri selülozdan oluşan çeperleri parçalarlar, daha sonra pektinaz enzimleri hücreleri birbirine bağlayan pektin tabakasını parçalarlar. Giderek artan bu gerginliğe yaprak dayanamaz ve sapın dış tarafından içeriye doğru yarılmaya başlar.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Buraya kadar anlattığımız bu işlemler yapraktaki besin üretiminin durması ve yaprağın sapından kopmaya başlaması olarak özetlenebilir. Genişlemeye devam eden yarığın etrafında çok hızlı değişimler yaşanır ve hücreler hemen mantarözü üretmeye başlarlar. Bu madde, selüloz çepere yavaş yavaş yerleşerek onun güçlenmesini sağlar. Bütün bu hücreler, arkalarında mantar tabakasının yerini alan büyük bir boşluk bırakarak ölürler.[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Buraya kadar anlatılanlar tek bir yaprağın düşmesi için birbirine bağlantılı birçok olayın gerçekleşmesi gerektiğini göstermektedir. Fitokromların güneş ışınlarının azaldığını tespit edebilmelerinin, yaprağın düşmesi için gerekli olan tüm enzimlerin uygun zamanlarda devreye girmelerinin, tam sapın kopacağı yerde hücrelerin mantarözü üretmeye başlamasının ne derece olağanüstü bir işlemler zinciri olduğu ortadadır. Art arda işleyen ve her aşaması planlı ve birbiriyle bağlantılı olan bu kusursuz işlemler serisinin "rastlantı" ile açıklanması mümkün değildir. Bütün bu işlemlerdeki zamanlama son derece yerindedir. Yaprak dökümü planı kusursuz bir şekilde işlemektedir.
Yaprak gövdeden tamamen ayrıldığı için, iletim borularından öz su alamaz, bu yüzden yaprağın tutunduğu yer ile bağı gittikçe zayıflar. Biraz hızlı esen bir rüzgar bile yaprak sapını koparmaya yeterli olur.
Toprağa düşen ölü yapraklarda, böceklerin, mantarların ve bakterilerin yararlanabileceği besin maddeleri bulunur. Bu besin maddeleri, mikroorganizmalar tarafından değişime uğratılırlar ve toprağa karışırlar. Ağaçlar da bu maddeleri kökleri aracılığıyla topraktan tekrar besin olarak geri alabilirler.
Allah bitkilerde mucizevi özelliklere sahip bir sistem yaratmıştır. Rabbimiz yarattığı canlılardaki bu gibi yapılarla bize yaratmada hiçbir ortağı olmadığını, sonsuz güç sahibi olduğunu tanıtır.
"Allah'tan başka, sana yararı da, zararı da olmayan(ilahlar)a tapma. Eğer sen (bunun aksini) yapacak olursan, bu durumda gerçekten zulmedenlerden olursun" (diye emrolundum.) Allah sana bir zarar dokunduracak olsa, O'ndan başka bunu senden kaldıracak yoktur. Ve eğer sana bir hayır isterse, O'nun bol fazlını geri çevirecek de yoktur. Kullarından dilediğine bundan isabet ettirir. O, bağışlayandır, esirgeyendir. (Yunus Suresi, 106-107)

Alıntı ile Cevapla
Cevapla




Saat: 15:51


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2025, ve
Jelsoft Enterprises Ltd.'e Aittir.
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2