#1
|
|||
|
|||
Foton nedir
Birine "ağaç nedir" diye sorsaydık buna cevap vermesi pek zor olmazdı ancak cevabın içeriği kişinin bakış açısına bağlı olurdu. Örneğin çoğumuz muhtemelen bir Ağacın en bariz fiziksel niteliklerini sayardık: Büyüklüğü kütlesi rengi genel yapısı vs. Ama bir botanikçi ağacın nasıl ortaya çıktığını büyüdüğünü ve geliştiğini anlatırdı. Biyokimyacı kimyasal yapısından söz ederdi: Selüloz klorofil vs. Bir çiftçi veya Kereste ticaretiyle uğraşan biri de ağaçtan elde ettiği ürünlerden söz ederdi: Meyve veya kereste. Birlikte göz önüne alındığında bütün bu tarifler Ağaç denince ne anladığımızı gösterir. Ömründe ağaç görmemiş birine Ağacı anlatmak isteseydik yukarıdakilerin hepsini saymamız gerekirdi. Fotonlar konusunda da durum böyledir. "Foton nedir?" sorusuna cevap ararken bir çok değişik perspektiften bakan cevaba gerek vardır.
En bariz özelliklerini şöyle sayabiliriz: Durgun kütlesi sıfırdır ışık hızıyla gider etkileşimlere parçacık olarak girebilir ancak dalga olarak yayılır E=hn p=h/l ve E=pc bağıntılarına uyar kütlesi sıfır olduğu halde diğer parçacıklar gibi kütle çekiminden bile etkilenir. Farklı bir açıdan fotonların nasıl ortaya çıktıklarını (bremsstrahlung proseslerinde olduğu gibi) veya bir yerden başka bir yere giderken nasıl hareket ettiklerini anlatabiliriz. Temel fizikteki yerlerini bile belirtebiliriz: Fotonlar elektromagnetik kuvveti iletirler. Bu açıdan bakılınca iki Elektrik yükü fotonları "takas ederek" etkileşir (fotonlar bir yükten yayınlanır öteki yük tarafından soğurulur). Bu fotonlar genellikle hayali veya "virtüel" (sezilgen) fotonlardır adları sadece teorik fiziğin matematiksel formalizminde anılır fakat gerçek fotonların sahip oldukları bütün özellikleri taşırlar. Bilinen hiç bir cevabı olmayan bir soru fotonun iç yapısının ne olduğudur. Foton nelerden mamuldür? Mahiyetlerinin gerçek matematiksel anlamda "nokta" olduğuna inandığımız foton ve Elektron gibi bazı elemanter (en basit yapıtaşı) parçacıklar bulunuyor: Fiziksel hiç bir büyükleri yoktur ve parçalardan oluşan iç yapıları olmadığından parçalarına ayrılamazlar. Fotonla ilgili olarak cevaplanması en zor soru onun bir parçacık mı yoksa dalga mı olduğu sorusudur. Yukarda sayılan özelliklere sahip bu fiziksel parçacık onunkinden çok farklı özellikler listesine sahip elektromagnetik dalgadan daha mı gerçektir? Burada bir paradoksun varlığı aşikar. Girişim ve kırınım içeren bazı deneyler elektromagnetik radyasyonun (ışımanın) deney düzeneğiyle dalgalar olarak etkileştiklerini gösteriyor fotoelektrik etki ve Compton saçılması gibi başka deneyler de elektromagnetik radyasyonun foton olarak bilinen parçacık-gibi quantumlar şeklinde etkileştiğini gösteriyor. Şurası kesin ki dalga ve parçacık yorumları uyumlu değildir: Parçacıklar enerjilerini konsantre paketler halinde verirken bir dalganın enerjisi bütün dalga cephesi üzerinde düzgün olarak yayılır. Örneğin ışığı sadece parçacıklar olarak ele alırsak çift-yarık deneyinde gözlenen girişim desenini açıklamak zor olur. Bir parçacık ya bir yarıktan ya da diğerinden gitmelidir sadece bir dalga cephesi ikiye ayrılarak her iki yarıktan geçer ve sonra birleşir. Dalga ve parçacık yorumlarını geçerli fakat birbirini dışlayan alternatifler olarak kabul edersek bir kaynaktan çıkan ışığın ya dalga ya da parçacık olarak yayılması gerektiğini de kabul etmemiz gerekir. Kaynak ne tür ışık (dalga veya parçacık) üretmesi gerektiğini nasıl bilebilir? Farz edelim ki kaynağın bir tarafına çift-yarık düzeneği diğer tarafına da fotoelektrik düzeneği koyduk. Çift-yarık düzeneği tarafına yayılan ışık dalga gibi davranır fotosel tarafına yayılan ışık parçacık gibi davranır. Kaynak hangi yöne dalga ve hangi yöne parçacık yayınlayacağını nasıl bildi? Belki de tabiatta hangi deneyi yaptığımızı geriye kaynağa haber veren bir tür "gizli kod" var ve kaynak dalga veya parçacık üretmesi gerektiğini geri gelen sinyale göre anlıyor. Yukarıdaki ikili deneyi uzaklardaki bir galaksiden gelen ışıkla tekrarlayalım. Işık bize kabaca evrenin yaşı (15.10 üssü 9 sene )onbeş milyar sene kadar uzaktan geliyor olsun. Böyle bir deneyde bizim laboratuardaki çift-yarık deney düzeneğini alıp yerine fotoelektrik deney düzeneğini koymamız için geçen zaman zarfında ışığın bu değişikliği kaynağa haber vermesi mümkün olamazdı ancak yıldız ışığının hem çift-yarık girişimini hem de fotoelektrik etkiyi oluşturduğunu yine gözlerdik. O halde rahatsız edici bir sonucun kapanına kısıldık Işık ne parçacık ne de dalga her nasılsa hem parçacık hem de dalga ve yapmakta olduğumuz deneyin türüne göre bize her defasında sadece bir yüzünü gösteriyor: Parçacık-tipi bir deneyde parçacık yüzünü ve dalga-tipi bir deneyde dalga yüzünü. Bizim ışığı ya dalga ya da parçacık olarak sınıflandırmakta başarısız oluşumuzun nedeni ışığın tabiatını anlamaktaki başarısızlığımızdan ziyade sınırlı kelime hazinemizin basit bir dalga veya parçacıktan daha zarif ve daha esrarengiz bir olguyu tanımlamaktaki yetersizliğidir. Çift-yarık desenini gözlemek için gözümüzü veya bir fotoğrafik filmi kullanırsak durum daha da zorlaşır. Hem gözümüz hem de film bireysel fotonlara tepki verir. Bir tek foton bir retina hücresi tarafından soğurulduğunda beyne kadar giden bir elektrik impulsu meydana gelir (tabi görme böyle bir çok impulstan oluşur). Bir tek foton film tarafından soğurulduğunda fotoğrafik emülsiyonun minik bir bölgesi kararır tam bir resim için çok fazla sayıda minik bölgenin kararması gerekir. Bir an için fotonları soğurur ve kararırken filmin tek tek minik bölgelerini görebildiğimizi farz edelim ve bu deneyi fotonlar arasında nisbeten uzun zaman aralıklarının bulunduğu çok zayıf bir ışık kaynağıyla yapalım. Önce bir bölgeciğin ardından diğerinin sonra bir başkasının ... karardığını ve ancak çok sayıda foton filme düştükten sonra girişim deseninin ortaya çıkmaya başladığını görecektik. Alternatif olarak çift-yarık deneyinin dalga yorumu ekrana çarpan dalga cephelerinin net elektrik alanını iki yarıktan geçmek üzere gelen dalga cephelerinin kısmi elektrik alanlarını üst üste bindirme yoluyla hesaplayabileceğimizi düşündürüyor. Bu durumda birleşik dalganın şiddetini veya gücünü ilgili denklemlerle bulabilirdik. Bileşke şiddetin de çift-yarık deneyindeki gibi minimum ve maksimumlar göstermesini beklerdik. Özetle girişim deseninin kaynağının ve ortaya çıkışının doğru açıklaması dalga yorumunda film üzerindeki desenin oluşumunun doğru açıklaması da parçacık yorumundadır. Bizim sınırlı kelime hazinemiz ve her günkü deneyimlerimize göre bu iki açıklama aynı anda doğru olamaz elektromagnetik ışımanın tam bir açıklamasını vermek üzere ikisi bir şekilde birleştirilmelidir. Bu dalga-parçacık ikili tabiat dilemması basit bir açıklamayla çözülemez. Quantum teorisi ortaya atıldığından beri fizikçiler ve filozoflar bu sorun üzerinde kafa patlattılar. Diyebileceğimizin en iyisi ne dalga ne de parçacık yorumunun aynı anda tamamen doğru olmadığı fiziksel olguları tam olarak açıklamak için ikisine de gerek duyduğumuz ve bunların birbirlerini tamamladıklarıdır. Çift-yarık deneyinde şu şekilde akıl yürütebiliriz Bir ışıma "kaynağı" ile elektromagnetik alan arasındaki etkileşim quantizedir (sürekli değil kesik kesiktir) ve Atomları bireysel fotonlar yayan kaynaklar olarak düşünebiliriz. Deneyin diğer tarafındaki fotoğrafik film tarafındaki etkileşim de quantizedir ve Atomların bireysel fotonları soğurduklarını tasavvur edebiliriz. İkisinin arasında elektromagnetik enerji düzgün ve sürekli olarak bir dalga gibi ilerler ve dalga-gibi davranış sergiler (girişim veya kırınım). Çift-yarığın etkisi dalganın ilerleyişini değiştirmektir (örneğin düzlem dalgadan karakteristik çift-yarık desenine). Dalga şiddetinin büyük olduğu yerlerde fotoğraf filmi çok sayıda fotonun varlığını haber verir şiddetin küçük olduğu yerlerde az sayıda foton gözlenir. Bir dalganın şiddeti genliğinin karesiyle orantılı olduğundan şu bağıntı yazılır fotonları gözleme olasılığı µ (elektrik alan genliği)2 İşte bu ifade dalga davranışı ile parçacık davranışı arasındaki nihai ilişkiyi sağlar. Önceleri klasik parçacıklar olarak düşünülen elektron gibi nesnelerin dalga ve parçacık davranışlarını da benzer bir ifade birbirine bağlar. |