Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Eğitim - Öğretim > matematik - geometri
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 27 November 2008, 10:39
Senior Member
 
Kayıt Tarihi: 21 September 2008
Mesajlar: 15,180
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Post Tek - Çift Fonksiyonlar

Tek ve çift fonksiyonlar :
Tanımlı olan tüm x değerleri için f (-x) = -f (x) oluyorsa tek ;
f (-x) = f (x) oluyorsa çift fonksiyon denir.
Diğer bir deyişle
başlangıç noktasına (0,0) göre simetrik fonksiyonlar tek ;
y eksine göre simetrik fonksiyonlar çift fonksiyondur.

Örnek 36: f(x) = sinx +3x -x3 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = sin (-x) + 3(-x) -(-x)3
= -sinx -3x +x3
= -(sinx +3x -x3)
= -f(x) olduğundan tek fonksiyondur.

Örnek 37: f(x) = x2 + 4 -cosx fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + 4 -cos(-x)
= x2 + 4 -cosx
= f(x) olduğundan çift fonksiyondur.

Örnek 38: f(x) = x2 + x3 -3 fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + (-x)3 -3
= x2 - x3 -3 olduğundan ne tek ne de çift fonksiyondur.

Örnek 39: f(x) = 0 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = f(x) = -f(x) = 0
olduğundan fonksiyon hem tek hem de çifttir.
Diğer bir deyişle f(x)=0 fonksiyonu yani x ekseni
hem başlangıç noktası hem de y eksenine göre simetriktir.

Örnek 40: 2f(x) - x -2 = f(-x) fonksiyonu çift olduğuna göre f (x) fonksiyonunu bulunuz.
Çözüm : Çift fonksiyon olduğundan f(x) = f(-x) olur.
Dolayısıyla 2f(x) - x -2 = f(x) olacağından f(x) = x+2 olur.
Periyodik fonksiyonlar :
Eğer bir f(x) fonksiyonunda f (x) = f (x+t) olacak şekilde bir t gerçek sayısı bulunuyorsa f (x) fonksiyonu periyodiktir.
Buradaki t sayısına da o fonksiyonun periyodu denir.
Diğer bir deyişle periyodu t olan bir fonksiyonda
f(x+t) = f(x) ==> ( x+t ) - x = t olur.

Örnek 41: f (x) = g ( 2x+3 ) ile tanımlı iki periyodik fonksiyondan g (x) fonksiyonunun periyodu 5 ‘ tir. Buna göre f(x) fonksiyonunun periyodu nedir ?
Çözüm : f (x) fonksiyonunun periyoduna t dersek f(x+t) = f(x) olmalıdır.
Dolayısı ile g ( 2x+2t +3) = g( 2x+3) ve
( 2x+2t +3) - ( 2x+3) = 5 olmalıdır
( çünkü g (x) fonksiyonunun periyodu 5 )
buradan t = 5/2 bulunur.
f (x) fonksiyonunun periyodu t ise
f (ax+b) fonksiyonunun periyodu olur.
Buna göre g (x) fonksiyonu için t=5 olduğuna göre
g ( 2x+3) fonksiyonunun periyodu da 5/2 ‘dir de diyebilirdik.
f(x) ve g(x) gibi iki fonksiyonunun periyotları t1 ve t2 ise bu iki fonksiyonun toplam veya farklarının periyotları OKEK(t1 , t2 ) olur. Çarpım veya bölümlerinin periyotları ise bu fonksiyonları toplam veya fark formuna çevirerek bulunur.

Örnek 42 : f(x) fonksiyonunun periyodu 3,
g(x) fonksiyonunun periyodu 4 ise
h(x) = f (3x+5)-g(2x+7) fonksiyonunun periyodu nedir ?
Çözüm : f (3x+5) fonksiyonunun periyodu 3/3 = 1 ve g(2x+7) fonksiyonunun periyodu 4/2 = 2 olduğundan h(x) fonksiyonunun periyodu OKEK(1,2) = 2 olur.
Trigonometrik fonksiyonlardan
sin x ve cos x fonksiyonlarının periyotları 2 ;
tanx ve cotx fonksiyonlarının periyotları ise  ‘dir.

Örnek 43 : f (x) = cos(2x-3) + sin (4x-5) ise f(x) fonksiyonunun periyodu nedir ?
Çözüm : cos(2x-3) fonksiyonunun periyodu ve
sin (4x-5) fonksiyonunun periyodu olduğundan
f (x) fonksiyonunun periyodu ikisinin OKEK’i olan  ‘ dir.

Örnek 44 : f (x) = 6sin5xcos3x -5 fonksiyonunun periyodu nedir ?
Çözüm : Ters dönüşüm formullerinden yararlanarak buluruz.
Dolayısıyla f (x) = 3sin 8x +3sin 2x -5 olacağından ;
sin 8x fonksiyonunun periyodu ve
sin 2x fonksiyonunun periyodu ise olur.
f (x) fonksiyonunun periyodu da OKEK ( olur.

Örnek 45 : f(x) = 3sin25x +2 fonksiyonunun periyodu nedir ?
Çözüm : cos 2x = 1-2sin2x olduğundan
olur.
Bu nedenle olur.
f(x) fonksiyonu da
olacağından periyodu da bulunur.
Sinkax ve coskax fonksiyonlarının periyotları k sayısı çift ise ,
k sayısı tek ise ;
tankax ve cotkax fonksiyonlarının periyotları
k sayısı ne olursa olsun ‘dır.
Buna göre aynı soru k =2 olduğundan bu bilgileri kullanarak ’ dir de diyebiliriz .

Fonksiyonların toplamı,farkı, çarpımı,bölümü :
f (x) ve g (x) fonksiyonları için
h (x) = ( f + g ) (x) = f (x) + g (x) fonksiyonuna toplam fonksiyonu ;
h (x) = ( f - g ) (x) = f (x) - g (x) fonksiyonuna fark fonksiyonu ;
h (x) = ( f . g ) (x) = f (x) . g (x) fonksiyonuna çarpım fonksiyonu ;
h (x) = ( f / g ) (x) = f (x) / g (x) fonksiyonuna bölüm fonksiyonu denir.
Burada dikkat edilmesi gereken noktalardan
birincisi h (x) fonksiyonunun tanım kümesi
f ve g fonksiyonlarının tanım kümelerinin kesişim kümesidir , ikincisi ise fonksiyonlar üzerinde tanımlanan işlemler fonksiyonların görüntü kümeleri üzerinde yapılacaktır.

Örnek 46 : f (x) = 3x+5 fonksiyonu için tanım kümesi A = {-1,1,2,3} ve g (x) = 2x-3 fonksiyonu için tanım kümesi B = {-1,2,3,4} olduğuna göre h (x) = (f+g)(x) fonksiyonunun tanım ve değer kümelerini bulunuz.
Çözüm : Tanım kümesi = A  B = {-1,2,3} olur.
h (x) = (3x+5) + (2x-3) = 5x+2 olduğundan
h (-1) = -3
h ( 2) = 12
h (3) = 17 olur ve değer kümesi de G = {-3,12,17} şeklinde bulunur.

Örnek 47 : f : A  B , f (x) = {(1,2),(2,3),(3,4)} ve
g : C  D , C = {1,2,3} ,g (x) = x+1 olduğuna göre
h (x) = 2f(x)+3g(x) fonksiyonunun değer kümesini bulunuz .
Çözüm : Fonksiyonlar incelendiğinde eşit fonksiyon oldukları görülmektedir. Dolayısı ile h (x) = 5f (x) diye düşünülebilir.
h (1) = 5f (1) = 10 ;
h (2) = 5f (2) = 15
h (3) = 5f (3) = 20 olduğundan değer kümesi ={10,15,20} olarak bulunur.
Alıntı ile Cevapla
Cevapla




Saat: 14:37


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2025, ve
Jelsoft Enterprises Ltd.'e Aittir.
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2