Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Eğitim - Öğretim > matematik - geometri
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 9 December 2008, 13:19
Junior Member
 
Kayıt Tarihi: 1 September 2008
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Bağıntı, Fonsiyon, İşlem

BAĞINTI, FONSİYON, İŞLEM

SIRALI İKİLİ :

a ve b elemanlarının belirttiği ( a , b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Yani : (a , b ) ≠ (b , a ) dir.
Örnek :

A( 1 , 3 ) noktası ile B( 3 , 1 ) noktası eşit noktalar değildir.

Noktalar kümesinin elemanları sıralı ikililerdir.
Sıralı ikililerin bileşenleri birinci bileşen, ikinci bileşen olarak adlandırılır.
Sıralı İkililerin Eşitliği :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.
Yani (x , y ) = (a , b ) ise x = a ve y = b
ÖRNEK :
( x + 3 , y – 1 ) = ( 6 , 4 ) ise x ve y sayıları kaçtır?

Çözüm :

Sıralı ikililerin eşitliği için birinci ve ikinci bileşenler birbirine eşit olmalıdır.
Yani x +3 = 6 y – 1 = 4

x = 6 – 3 y = 4 + 1

x = 3 ve y = 5 bulunur.

( x + 3 , y – 1 ) = ( 6 , 4 )

1. ( x + 3 , y + 1 ) = ( 1 , 2 ) ise x = ? ve y = ?

2. ( 2x , y - 5 ) = ( 8 , -3 ) ise x = ? ve y = ?

3. ( x/2 , 3y ) = ( 6 , 0 ) ise x = ? ve y = ?

4. ( 2x + 1 , 4 ) = ( 7 , y - 2 ) ise x = ? ve y = ?

ALIŞTIRMALAR 1 :
KARTEZYEN ÇARPIM

A ve B herhangi iki küme olsun. Birinci bileşeni A’ dan, ikinci bileşeni B’ den alınarak oluşturulabilecek tüm sıralı ikililerin kümesine, A ile B’ nin kartezyen çarpımı denir ve A x B biçiminde gösterilir. Buna göre;

şeklinde gösterilir.

ÖRNEK : Aynı futbol takımında oynayan Ali, Sertaç ve Tamer, 7, 10 ve 11 numaralı formaları giyebilirler. Bu oyuncuların seçebilecekleri formaları gösteren sıralı ikilileri yazalım.

ÇÖZÜM : A kümesi A = { Ali , Sertaç , Tamer }

B kümesi B = { 7 , 10 , 11 }

A X B = { (Ali, 7 ), (Ali, 10), (Ali, 11 ), (Sertaç,7 ), (Sertaç,10 ), (Sertaç,11 ), (Tamer, 7 ), (Tamer, 10 ), (Tamer, 11 ) }

ÖRNEK : A = {1,2 } , B = {3,a} olduğuna göre A x B ve BxA kümelerini yazınız.

ÇÖZÜM :

AxB = {(1,3), (1,a), (2 ,3), (2 ,a) }

BxA = {(3 ,1), (3,2 ), (a ,1), (a , 2)}

ÖRNEK : A = { -1, 1, 2 } , B = { 0, 1 } olduğuna göre A x B kümesini analitik düzlemde gösteriniz.

ÇÖZÜM :

A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )}

ÖRNEK : A X B = { (-1 , 0 ), (-1 , 1), (1 , 0 ), ( 1 , 1 ), ( 2 , 0 ), (2 , 1 )} kartezyen çarpımını oluşturan A ve B kümelerini yazalım.

ÇÖZÜM : Birinci bileşenler A kümesini, ikinci bileşenler B kümesini oluşturur. Tekrar eden eleman küme içine bir kez yazılır.

A kümesi A = { -1, 1 , 2 }

B kümesi B = { 0, 1 }

ÖRNEK : A X B = { ( 0 , 0 ), ( 0 , 1), ( 0 , 2 ), ( -3 , 0 ), ( -3 , a ), (-3 , 2 )} kartezyen çarpımında a ile gösterilen sayı kaçtır?

ÇÖZÜM : 0 ile başlayan sıralı ikililerin ikinci bileşenleri 0, 1, 2 dir. –3 ile başlayan sıralı ikililerin ikinci bileşenleri de 0, 1, 2 olmalıdır. Bu nedenle a elemanı 1 olmalıdır.
1. A = { 0, 1, 2 ) ve B = { -2, 2 } ise AXB = ?

2. A = { -2, 0, 3 ) ve B = { -1, 0, 1 } ise AXB = ?

3. A = { 2, 3, 4, 5 ) ve B = {6 } ise AXB = ?

4. A = { -1, 1, 2 ) ve B = { -3, 2, 5 } ise AXB çarpımını analitik düzlemde gösteriniz.

5. A X B = { (A, 2 ), (A, 5), ( B, 2 ), ( B, 5 ), ( C, 2 ), ( C, 5 ) } ise A ve B kümelerini yazınız.

6. A X B = { ( 2 , 2 ), ( 2 , 5), ( 2 , 8 ), ( 3 , 2 ), ( 3 , 5 ), ( 3 , 8 ), ( a , 2 ), ( 4 ,5 ),( 4 , 8 ) } kartezyen çarpımında a ile gösterilen sayı kaçtır?

7. A X B = { (-3, -2 ), (-3, 1), ( 0, -2 ), ( 0, 1 ), ( 2, -2 ), ( 2, 1 ) } ise AUB kümesini yazınız.

ALIŞTIRMALAR 2 :

KARTEZYEN ÇARPIMININ ÖZELLİKLERİ

S(A) ; A kümesinin eleman sayısını göstermektedir.

1) s(AxB) = s(BxA) = s(A).s(B)

2) A≠B ise AxB ≠ BxA değişme özelliği yoktur.

3) (AxB)xC = Ax(BxC) birleşme özelliği vardır .

4) Ax(BUC) = (AxB)U(AxC)

5) Ax(B ∩C) = (AxB) ∩ (AxC)

6) AxA = A²

ÖRNEKLER

1. A = { 2, 5 } , B= { -1, 1, 3 } ve C = { 0, 4 } ise (AxB)U(AxC) kümesini bulalım.
ÇÖZÜM : (AxB)U(AxC) = Ax(BUC) olduğundan önce BUC kümesini buluruz.
BUC = { -1, 0, 1, 3, 4 }
Ax(BUC) = { ( 2, -1 ), ( 2, 0 ), ( 2, 1 ), ( 2, 3 ), ( 2, 4 ), ( 5, -1 ), ( 5, 0 ), ( 5, 1 ), ( 5, 3 ), ( 5, 4 )}
2. A, B ve C üç kümedir. s(BUC) = 4 ve s[Ax(BUC)] = 32 olduğuna göre A dan A ya kaç tane bağıntı yazılabilir?

ÇÖZÜM : s[Ax(BUC)] = S(A). S(BUC) = 32

S(A). 4 = 32

S(A ) = 32:4 = 8

A dan A ya yazılabilecek bağıntı sayısı 28.8 = 264 tanedir.



BAĞINTI

A ve B herhangi iki küme olsun. AxB ‘ nin her alt kümesine , A’ dan B’ ye bir bağıntı denir.

* AxA ‘ nın her alt kümesine A’ dan A’ ya bağıntı ya da A’ da bir bağıntı denir.
* s (A) = m , s (B) = n ise A’ dan B’ ye 2m.n tane bağıntı tanımlanır.

ÖRNEK : AxB = {(1,3), (1,a), (2 ,3), (2 ,a) } kartezyen çarpımının 4 tane elemanı vardır.

Bu kümenin alt kümeleri sayısı 24 = 16 ‘dır.

O halde A ‘ dan B ‘ ye 16 tane bağıntı tanımlanabilir.

Örneğin

β1 = {(1,3), (1,a) } ve β2 = { (1,a), (2 ,3), (2 ,a) } alt kümeleri A dan B ye birer bağıntıdır.



SONUÇ : s(A) = m ve s(B) = n ise A dan B ye tanımlanabilen bağıntı sayısı 2m.n tanedir.
ÖRNEKLER
1. Doğal sayılar kümesinde β = {(x,y)| x + y = 2 } bağıntısının sıralı ikililerini yazalım.
ÇÖZÜM : Bağıntı (x , y ) şeklinde olan ve x ile y nin toplamı 2 olan sıralı ikilileri yazın diyor.
Bunlar: β = {(0,2), (1,1), (2,0) } olur
2. Doğal sayılar kümesinde β = {(x,y)| x > y } bağıntısının sıralı ikililerini yazalım.
ÇÖZÜM : Bağıntı (x , y ) şeklinde ve x in y den büyük olduğu sıralı ikilileri yazın diyor.

Bu sıralı ikililerin tümünü yazamayız.
Bu nedenle β = {(1,0), (2,0), (3,0),..., (2,1), (3,1), (4,1),..., } şeklinde bu bağıntının sıralı ikililerini gösterebiliriz.
3. Reel sayılar kümesinde β = { (x,y) | l x l = 3 ve x+2> y > 0 } bağıntısının gösterdiği alan kaç birim karedir?

ÇÖZÜM : l x l = 3 demek x = ± 3 demektir.

x = 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani 5 > y > 0 olur.

x = - 3 ' ü ikinci eşitsizlikte yerine yazarsak x + 2 > y > 0 , yani -1> y > -3 olur.

Bölge bir kenarı 6 birim olan karedir. Alanı 6x6 = 36 olur.
Alıntı ile Cevapla
Cevapla




Saat: 04:56


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2024, ve
Jelsoft Enterprises Ltd.'e Aittir.
gaziantep escort bayan gaziantep escort
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com ikili opsiyon bahis vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort
mecidiyeköy escort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2