Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Eğitim - Öğretim > matematik - geometri
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 9 December 2008, 14:46
Junior Member
 
Kayıt Tarihi: 1 September 2008
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Fibonacci Serisi

Fibonacci Serisi

Mısır'daki piramitler, Leonardo da Vinci'nin Mona Lisa adlı tablosu, ay çiçeği, salyangoz, çam kozalağı ve parmaklarınız arasındaki ortak özellik nedir?

Bu sorunun cevabı, Fibonacci isimli İtalyan matematikçinin bulduğu bir dizi sayıda gizlidir. Fibonacci sayıları olarak da adlandırılan bu sayıların özelliği, dizideki sayılardan her birinin, kendisinden önce gelen iki sayının toplamından oluşmasıdır.


Bu özel dizilim, bu kuralı keşfeden Fibonacci isimli matematikçinin adı ile anılır ve "Fibonacci serisi" olarak bilinir. Bu kural estetik mükemmellik manasına gelir ve resim, heykel, mimari gibi alanlarda temel bir ölçü olarak kullanılmaktadır. Doğada çok sık rastlanılan bu oran bitkilerdeki ince hesap ve tasarımı anlamada önemli bir anahtardır.

3/8'in ötesindeki kesirler yosun, lahana ya da her iki tarafa spiral yönde giden taç yapraklı, ayçiçeği gibi sık tohum ya da yaprak sistemlerinde bulunur. Bu bitkilerin yaprakları merkezin etrafında sağdan veya soldan dolanırken bir spiral çizerler, bu spirallerde tur başına düşen yaprak sayısı da fibonacci kuralına göre belirlenir. Mesela papatyanın merkezi üç ardışık kesir kullanır: 13/34, 21/55 ve 34/89; yani yaprağın merkezi boyunca yapacağı bir tur dönüşteki yaprak sayısı ve buna denk düşen dönüş açısı önceden bellidir.

Fibonacci Sayıları: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...

1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89...

Fibonacci sayılarının ilginç bir özelliği vardır. Dizideki bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine çok yakın sayılar elde edersiniz. Hatta serideki 13. sırada yer alan sayıdan sonra bu sayı) sabitlenir. İşte bu sayı "altın oran" olarak adlandırılır.
  • ALTIN ORAN = 1,618
233 / 144 = 1,618
377 / 233 = 1,618
610 / 377 = 1,618
987 / 610 = 1,618
1597 / 987 = 1,618
2584 / 1597 = 1,618

Bu yolla elde edilen dizinin terimleri Fibonacci dizisinin birbirini takip eden sayılarının bölümü şeklindedir. Ve bu dizinin terimleri olan oranları çam kozalaklarında (5/8, 8/13), ananas meyvesinde (8/13), papatyanın orta kısmındaki floretlerde (21/34), ayçiçeklerinde (21/34, 34/55, 55/89) sağ ve sol spirallerin sayısı olarak görmekteyiz. İşte bu oran ve bu oran sayesinde ortaya çıkan görüntü, doğadaki çiçeklere, ağaçlara, tohuma, deniz kabuklarına ve daha sayısız canlıya estetik bir mükemmellik kazandırır.

Altın oranın doğadaki yeri bununla da kalmayıp, ideal yaprak açılarında da kendini göstermektedir. Bilindiği gibi bitkilerde yapraklar, dik gelen güneş ışınlarından maksimum yararı sağlamak üzere belli bir açıyla sıralanırlar. Örneğin, 2/5'lik yaprak diverjansına sahip bir bitkide yaprak aralarındaki açı, 2 x 360 derece / 5 = 144 derecedir. Yapraklarda karşımıza çıkan sayısal mucizeler bununla da sınırlı değildir. Yaprak yüzeyleri de belirli matematik hesaplarının sonucunda anlaşılabilecek tasarımlara sahiptirler. Yaprağın ortasından geçen damar (midrib) ve ondan çıkarak yaprak yüzeyine dağılan damarlar ve bunların besledikleri dokular, bitkiye belirli bir şekil ve yapı kazandırırlar. Yapraklar çok farklı formlara sahip olmalarına rağmen bu hassas ölçüleri muhafaza ederler. Bitkilerin belirli matematik formüllere göre şekillenmiş olmaları onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir. Bitkinin atomlarında, DNA'sında gördüğümüz hassas ölçüler ve dengeler, bitkinin dış görünümünde de ortaya çıkmaktadır. Bitkinin Güneş'ten maksimum faydalanması gibi hayati amaçların yanısıra, bitkiye estetik bir güzellik kazandıran bu formüller, belirli sayıdaki moleküllerin bir araya gelmesiyle ortaya çıkan renklerle birleştiğinde ortaya müthiş manzaralar çıkmaktadır.

İşte bu altın oran, sanatçıların çok iyi bildikleri ve uyguladıkları bir estetik kuralıdır. Bu orana bağlı kalarak üretilen sanat eserleri estetik mükemmelliği temsil ederler. Sanatçıların taklit ettikleri bu kuralla tasarlanan bitkiler, çiçekler ve yapraklar Allah'ın üstün sanatının birer örneğidirler.
  • ALTIN ORAN = 1,618
Kenarlarının oranı altın orana eşit olan bir dikdörtgene "altın dikdörtgen" denir. Uzun kenarı 1,618 birim kısa kenarı 1 birim olan bir dikdörtgen altın dikdörtgendir. Bu dikdörtgenin kısa kenarının tamamını kenar kabul eden bir kare ve hemen ardından karenin iki köşesi arasında bir çeyrek çember çizelim. Kare çizildikten sonra yanda kalan küçük bir kare ve çeyrek çember çizip bunu asıl dikdörtgenin içinde kalan tüm dikdörtgenler için yapalım. Bunu yaptığınızda karşınıza bir sarmal çıkacaktır.

İngiliz estetikçi William Charlton insanların sarmalları hoş bulmaları ve binlerce yıl öncesinden beri kullanmalarını "Sarmallardan hoşlanırız çünkü, sarmalları görsel olarak kolayca izleyebiliriz." diyerek açıklar.

Temelinde altın oranı yatan sarmallar doğada şahit olabileceğiniz en eşsiz tasarımları da barındırırlar. Ayçiçeği ya da kozalak üzerindeki sarmal dizilimler bu konuda verilebilecek ilk örneklerdir. Yüce Allah'ın kusursuz yaratışının ve her varlığı bir ölçü ile yarattığının bir örneği olan bu durumun yanı sıra birçok canlı büyüme sürecini de logaritmik sarmal formunda gerçekleştirir. Bunun sarmaldaki yayların daima aynı biçimde olması ve yayların büyüklüğünün değişmesine karşın esas şeklin (sarmal) hiç değişmemesidir. Matematikte bu özelliğe sahip başka bir şekil yoktur.

Canlıların tüm fiziksel özelliklerinin depolandığı molekül de altın orana dayandırılmış bir formda yaratılmıştır. yaşam için program olan DNA molekülü altın orana dayanmıştır. DNA düşey doğrultuda iç içe açılmış iki sarmaldan oluşur. Bu sarmallarda her birinin bütün yuvarlağı içindeki uzunluk 34 angström genişliği 21 angström'dür. (1 angström; santimetrenin yüz milyonda biridir) 21 ve 34 art arda gelen iki Fibonacci sayısıdır.

Fibonacci dizileri ve altın oran ile fizik biliminin sahasına giren konularda da karşılaşırız:

"Birbiriyle temas halinde olan iki cam tabakasının üzerine bir ışık tutulduğunda, ışığın bir kısmı öte yana geçer, bir kısmı soğurulur, geriye kalanı da yansır. Meydana gelen, bir, 'çoklu yansıma' olayıdır. Işının tekrar ortaya çıkmadan önce camın içinde izlediği yolların sayısı, ışının maruz kaldığı yansımaların sayısına bağlıdır. Sonuçta, tekrar ortaya çıkan ışın sayılarını belirlediğimizde bunların Fibonacci sayılarına uygun olduğunu anlarız."

Doğada birbiriyle ilişkisiz canlı veya cansız pek çok yapının belli bir matematik formülüne göre şekillenmiş olması onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir.
Alıntı ile Cevapla
Cevapla




Saat: 05:08


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2024, ve
Jelsoft Enterprises Ltd.'e Aittir.
gaziantep escort bayan gaziantep escort
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com ikili opsiyon bahis vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort
mecidiyeköy escort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2