Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi
 

Go Back   Seversintabi.com Türkiye'nin En Büyük Forumu Bence Seversin Tabi > Eğitim - Öğretim > Fizik
Yardım Topluluk Takvim Bugünki Mesajlar Arama

gaziantep escort gaziantep escort
youtube beğeni hilesi
Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 31 December 2008, 10:49
Banned
 
Kayıt Tarihi: 26 September 2008
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Kurtulma hızı

Fizikte kurtulma hızı gravitasyon alanındaki (yerçekimi etkisindeki) herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cimsin kendisini etkileyen gravitasyon alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

Ayrıntılı tanım

Belirli bir gravitasyonel alan etkisi altında ve pozisyonda bir cismin gravitasyon kaynağından herhangi bir ek ivme gerektirmeden kaçabilmesi için sahip olması gereken minimum hız o cismin kurtulma hızıdır. Kurtulma hızına sahip cisim kaçmayısısa çalıştığı kütleye geri düşmez veya o cisim etrafında herhangi bir yörüngede (orbit) hareket etmez. Kurtulma hızı teoride yönden bağımsızdır; yani bu hıza sahip cisim üç boyutlu bir uzayda hangi yönde hareket ediyor olsun çekim kaynağından kaçmayısısı başaracaktır. Ancak yön pratik uzay uygulamalarında önemlidir çünkü Uzay Mühendisliği bilimince de sıkça incelendiği gibi cimsin fırlatılış hızı ile beraber sahip olacağı son yörüngeyi belirler. Dolayısıyla kutupsal (polar) yörüngeye yerleştirilecek bir uyduyu taşıyan füzeye atmosferdeki yükselişi esnasında verilecek yön ile eliptik bir yörüngeye yerleştirilecek başka bir uyduyu taşıyan füzeye verilecek yön hemen hemen ayni yükseliş hızına sahip de olsalar farkıdır. Kurtulma hızına ulaştırılıp dünyanın yerçekim alanını terk ettirilecek (örn. uzay sondaları) gibi cisimler fırlatılışın genellikle tüm aşamalarını atmosfere dik olarak geçtikten sonra uzay ortamında ateşlenen nispeten küçük roket motorlarıyla gidecekleri hedef gezegene doğru yönlendirilirler.

Aynı fiziksel teoremi tersten düşünecek olursak tek merkezli bir gravitasyonel (yerçekim) alanının etkisi altında ve sonsuz uzaklıktaki bir cisim söz konusu gravitasyonal alanı yaratan kütleye yaklaşırken en fazla o cisimden kaçarken erişmesi gereken minimum hız olan kurtulma hızında seyir edecektir. Kurtulma hızı genellikle kütlelerin yüzeyinde ölçülür. Yani "Dünya'nın kurtulma hızı 11.2 km/s'dir" dedigimizde aslında dünyanın yüzeyinde deniz seviyesindeki bir konuma relatif kurtulma hızından bahsederiz. Buna nazaran örneğin 9000 km yüksekte (uzayda) cismin dünyanın yerçekiminden kaçması için sahip olması gereken kurtulma hızı 7.1 km/s'dir. Bir başka deyişle cisim yerçekim kaynağından uzaklaştıkça o kaynaktan kaçabilmesi için erişmesi gereken kurtulma hızı azalır.

Terimin yanlış kullanımları

Kurtulma Hızı herhangi bir cismin büyük kütlenin etrafındaki herhangi bir yörüngeden çıkması için sahip olması gereken hızla karıştırılmamalıdır. Belirli bir motor ve hareket kabiliyetine sahip cisim (örneğin bir helikopter) büyük kütlenin kütle merkezinden istedigi herhangi bir hızda uzaklaşabilir. Uzaklık arttıkça cismin büyük kütlenin yerçekiminden ilelebet kurtulabilmesi için çıkması gereken hız azalacaktır.

Bazı bilinen gök cisimlerinin kurtulma hızları

Fırlatılış yeri Kaçılan gökcismi Ve Fırlatılış yeri Kaçılan gökcismi Ve
Güneş'in yüzeyi Güneş: 617.5 km/s
Merkür'ün yüzeyi Merkür: 4.4 km/s Merkür'ün yüzeyi Güneş: 67.7 km/s
Venüs'ün yüzeyi Venüs: 10.4 km/s Venüs'ün yüzeyi Güneş: 49.5 km/s
Dünya'nın yüzeyi Dünya: 11.2 km/s Dünya'nın yüzeyi Güneş: 42.1 km/s
Ay'ın yüzeyi Ay: 2.4 km/s Ay'ın yüzeyi Dünya: 1.4 km/s
Mars'ın yüzeyi Mars: 5.0 km/s Mars'ın yüzeyi: Güneş: 34.1 km/s
Jüpiter'in yüzeyi Jüpiter: 59.5 km/s Jüpiter'in yüzeyi Güneş: 18.5 km/s
Satürn'ün yüzeyi Satürn: 35.5 km/s Satürn'ün yüzeyi Güneş: 13.6 km/s
Uranüs'ün yüzeyi Uranüs: 21.3 km/s Uranüs'ün yüzeyi Güneş: 9.6 km/s
Neptün'ün yüzeyi Neptün: 23.5 km/s Neptün'ün yüzeyi Güneş: 7.7 km/s
Güneş sistemi Samanyolu galaksisi: ~1000 km/s[1]
Herhangi bir Karadeliğin yüzeyi Karadelik ≥ 299792.458 km/s

Atmosfer yüzünden Dünya yüzeyine yakın irtifalarda cisme 11.2 km/s'lik hipersonik bir hız kazandırmak cismin hava molekülleri ile kolezyonu sonucu yanarak parçalanmasına sebep olacağından pratikte mümkün değildir. Gerçek uzay uygulamalarında atmosferin yavaşlatıcı etkisini egale etmek için cisim öncelikle alçak Dünya yörüngesine yerleştirilir sonra ikinci bir motor ateşlemesiyle kurtulma hızına ulaştırılır.

Kurtulma hızının hesaplanması

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Burada ve kurtulma hızı G kütleçekim sabiti M kaçılan cismin kütlesi m kaçan cismin kütlesi g yerçekimi ivmesi r cismin merkezi ile kurtulma hızının hesaplandığı nokta arasındaki mesafe ve μ ise standart kütleçekim parametresini sembolize etmektedir.[2]

Belirli bir irtifada kurtulma hızı o irtifada dairesel orbitte hareket eden cismin hızının katına eşittir. Küresel olarak homojen dağılımlı bir kütleye sahip cisim için yüzeyden kaçışta ihtiyac duyacağı kurtulma hızı ve (m/s cinsinden) yaklaşık 2.364×10−5 m1.5kg−0.5s−1 çarpı yarıçap r (metre cinsinden) çarpı averaj yoğunluğun ρ (kg/m³ cinsinden) karekökü olur.

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Kurtulma hızını işlence kullanarak türevleme

Aşağıdaki türevlerde Newton'un evrensel çekim kanunu Newton'un hareket kanunları ve integral işlence kullanılmıştır.

g ve r kullanarak türevleme

Dünya'nın kurtulma hızı yüzeyindeki standart yerçekimine bağıl ivme g kullanılarak elde edilebilir. Bu durumda Dünya'nın toplam kütlesi M veya yerçekimi sabitini G`nin bilinmesine de gerek yoktur. Şimdi

r = Dünya'nın yarıçapı
g = Dünya'nın yüzeyindeki yerçekim ivmesi
olsun. Dünya'nın yüzeyinin üzerindeki irtifalarda yerçekimi ivmesi Newton'un evrensel çekim kanunu'ndaki ters kare ilişkisi ile bulunur. Dünya'nın yüzeyinden s yükseklikteki bir noktada (ve s > r olduğunda) yerçekimi ivmesi g(r / s)2`dir. Burada m kütlesine sahip cismin yüzeydeki ağırlığı gm iken s yüksekliğindeki ağırlığı gm (r / s)² olur. Dolayısıyla m kütleli ve yüzeyden s yükseklikteki cismi yüzeyden s + ds yüksekliğine çıkartabilmek için ihtiyaç duyulan enerji gm (r / s)² ds olacaktır. Bu değer s arttıkça hızla azalacağından dolayı cismin sonsuz yüksekliğe çıkartılabilmesi için ihtiyaç duyulan toplam enerji sonsuza ulaşmaz ve sonlu bir meblaya yaklaşır. Bu mebla yukarıdaki ifadenin integralidir:

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Bu m kütleli cismin gezegenin yerçekiminden kaçabilmesi için sahip olması gereken kinetik enerjidir. Tabi v hızıyla ilerleyen ve m kütleli cismin toplam kinetik enerjisi Ek = (1/2)mv² formülü ile hesaplandığına göre

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

şeklinde bir eşitlik kurabiliriz. Burada m`ler birbirini iptal eder ve eşitliği v için çözersek

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

sonucuna ulaşırız. Dünya'nın yarıçapını r = 6400 kilometre yüzeyindeki yerçekimi ivmesini de g = 9.8 m/s² olarak alırsak

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

olacaktır. Bu rakam Isaac Newton'un hesapladığı 11 km/s`lik meblanın biraz üzerindedir.


Alıntı ile Cevapla
  #2  
Alt 31 December 2008, 10:51
Banned
 
Kayıt Tarihi: 26 September 2008
Mesajlar: 0
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Cvp: Kurtulma hızı

G ve M kullanarak türevleme

Aşağıdaki eşitlikte G kütleçekim sabiti M de Dünya'nın veya yerçekiminden kaçılacak başka bir kaynağın kütlesi olsun.

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Burada türevin zincir kuralını uygulayabiliriz.

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Eğer [Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] ise

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

olacaktır. Biz buradan kurtulma hızını (v0) istediğimize göre

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Buna göre v0 kurtulma hızı r0 de kaçılan gezegenin yarıçapıdır. Bu noktada okuyucuya yukarıdaki türevde ataletsel kütle ile gravitasyonel kütle arasındaki sayısal eşitliğin esas alındığını hatırlatmak yerinde olacaktır.

Türevler tutarlı mıdır?

Yerçekimine bağlı --gravitasyonel-- ivmeye (g) kütleçekim sabiti G ve gezegenin kütlesi M kullanılarak erişilebilinir:

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

Burada r gezegenin yarıçapı olduğuna göre

[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]

olur. Dolayısıyla yukarıda verilen iki türev birbiriyle tutarlıdır.

Birden fazla gravitasyon kaynağı ve vektörel etkiler

Birden fazla çekim kaynağının bulunduğu kompleks senaryolarda cismin ortamdan kaçması için ihtiyaç duyduğu net kurtulma hızı cismin bulunduğu vektörde sahip olduğu her etki kaynağına bağıl potansiyel enerjilerin toplanması ile elde edilir. Dolayısıyla cisim için tüm sistemden kurtulma hızı herbir etki kaynağının kurtulma hızlarının karelerinin toplamının kare köküne eşit olacaktır.

Buna bir örnek verecek olursak Dünya'nın yüzeyinden fırlatılacak bir cisim için hem Dünya'ya hemde Güneş'e bağıl net kurtulma hızı [Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL] şeklinde ifade edilir. Buna bînayen cisim dünyanın güneş etrafındaki 30 km/s'lik naturel yörüngesel vektöre paralel fırlatıldığında cismin güneş sistemini terk edebilmesi için ~13.6 km/s'lik öz kurtulma hızına sahip olması yeterlidir.

Yerçekim Drenajı

Kütlesel yoğunluğun gezegen içinde homojen olarak dağılmasi gibi hipotezsel bir varsayımda bulunacak olursak cismin söz konusu gezegenin yüzeyinden merkezine doğru uzanan silindir şeklindeki uzun bir tünele (sürtünmesiz ortam) bırakıldığında erişeceği en yüksek hız mevzû bahis gezegenin kurtulma hızının 'ye bölümüne eşittir. Bu sayı aynı zamanda cismin düşük irtifada gezegen etrafında tam dairesel yörüngedeki hızıyla da eşdeğerdir. Buna göre cismin gezegenin merkezinden fırlatıldığında erişmesi gereken kurtulma hızı yüzeyinden fırlatıldiğında erişmesi gereken hızın katı olacaktır.

Elbette uzay mühendislerince kullanılan daha gerçekçi kurtulma hızı hesaplamaları gezegenlerin yoğunluğunun kütlesi boyunca heterojen ve düzensiz dağıldığı gerçeği göz ardı edilmeden yapılır.
Alıntı ile Cevapla
Cevapla




Saat: 11:41


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2024, ve
Jelsoft Enterprises Ltd.'e Aittir.
gaziantep escort bayan gaziantep escort
antalya haber sex hikayeleri Antalya Seo tesbih aresbet giriş vegasslotguncel.com herabetguncel.com ikili opsiyon bahis vegasslotyeniadresi.com vegasslotadresi.com vegasslotcanli.com getirbett.com getirbetgir.com
ankara escort ankara escort ankara escort bayan escort ankara ankara escort çankaya escort ankara otele gelen escort eryaman escort eryaman escort eryaman escort kızılay escort çankaya escort kızılay escort ankara eskort
mecidiyeköy escort

Search Engine Friendly URLs by vBSEO 3.6.0 PL2