Genel Paylaşım Forumu     forum  

Go Back   Genel Paylaşım Forumu > >
Kayıt ol Yardım Topluluk Takvim Bugünki Mesajlar Arama

 
 
Seçenekler Stil
Prev önceki Mesaj   sonraki Mesaj Next
  #2  
Alt 2 October 2009, 01:16
Yorgun Yürek
Guest
 
Mesajlar: n/a
Standart Cevap: İkinci Dereceden FonkSiyonLar

O halde, y = ax2 + bx + c nin grafiği aşağıdaki gibidir.









ÖRNEKLER

1. y = x2 – 4x + 3 fonksiyonunun grafiğini çizelim.

Verilen fonksiyonda, a = 1 , b = -4 ve c = 3 tür.
Tepe noktasının koordinatları;
olduğundan, tepe noktası T(2, -1) dir.
Eksenleri kestiği noktaların koordinatlarını bulalım.
x = 0 için, y = 02 – 4.0 + 3 = 3  y eksenini kestiği nokta (0, 3) olur.
y = 0 için, x2 – 4x + 3 = 0 denkleminin kökleri x1 = 3, x2 = 1 olduğundan, x eksenini kestiği noktalar, (1, 0) ve (3, 0) bulunur.

Elde ettiğimiz bilgilerden yararlanıp değişim tablosu yaparak grafiği çizelim.






2. y = -x2 + x + 2 fonksiyonunun grafiğini çizelim.

Verilen fonksiyonda a = -1, b = 1 ve c = 2 dir.
Tepe noktasının koordinatları;
olduğundan, tepe noktası olur.

x = 0 için, y = 2 dir. O halde, y eksenini kesen nokta (0, 2) dir.
y = 0 için, -x2 + x + 2 = 0  x2 – x – 2 = 0  (x – 2) (x + 1) = 0
 x1 = 2 v x2 = -1 dir.

O halde, x eksenini kestiği noktalar; (2, 0) ve (-1, 0) dır.
Değişim tablosunu düzenleyip parabolü çizelim.






3. y = x2 – 4 fonksiyonunun grafiğini çizelim.

1. YOL: Verilen fonksiyonda, a = 1 , b = 0 ve c = -4 tür.
Tepe noktasının koordinatları;
olduğundan, tepe noktası T(0. 4) olur.

x = 0 için, y = -4 olduğundan grafik, y eksenini (0, -4) noktasında keser.
y = 0 için, x2 – 4 = 0  x2 = 4  x1 = 2 v x2 = -2 olduğundan, grafik x eksenini (-2, 0) noktalarında keser.





Değişim tablosunu düzenleyip parabolü çizelim.






y = ax2 + c biçiminde ifade edilen fonksiyonların grafiklerinin tepe noktası T(0, c) dir. Bu nokta y ekseni üzerinde işaretlenerek a > 0 ise grafiğin kolları yukarı doğru, a < 0 ise, kollar aşağı doğru çizilir.





2. YOL: Yukarıdaki açıklamaya göre y = x2 – 4 fonksiyonunun grafiğinin tepe noktas, T(0, -4) tür. a = 1 > 0 olduğundan, grafik yandaki gibidir.








4. y = x2 – 2x fonksiyonunun grafiğini çizelim.

Verilen fonksiyonda, a = 1 , b = -2 ve c = 0 dır.
Tepe noktasının koordinatları;
olduğundan, tepe noktası T(1. -1) dir.

x = 0 için, y = 02 – 2.0 = 0  Grafik y eksenini (0. 0) noktasında keser.
y = 0 için, x2 – 2x = 0  x(x – 2) = 0 x1 = 0 v x2 = 2
Grafik, x eksenini (0, 0) ve (2, 0) noktalarında keser.
Değişim tablosunu düzenleyip parabolü çizelim.






y = ax2 + bx + c parabolünde c = 0 ise, grafik orijinden geçer.

5. y = 2(x – 1)2 – 8 fonksiyonunun grafiğini çizelim.

y = a(x – r)2 + k biçiminde ifade edilen fonksiyonların grafiklerinin tepe noktası, T(r. k) idi.
O halde; y = 2(x – 1)2 – 8 fonksiyonunun tepe noktası; T(1, -8) dir.
x = 0 için, y = 2(0 – 1)2 – 8 = -6 ise, grafik y eksenini (0, 6) noktasında keser.
x1 = -1
y = 0 için, 2(x – 1)2 – 8 = 0  2(x – 1)2 = 8  x – 1 = 2
x2 = 3
Grafik x eksenini, (-1, 0) ve (3, 0) noktalarında keser.
Değişim tablosunu düzenleyip parabolü çizelim.







6. y = x2 +2x-1 fonksiyonunun grafiğini çizelim.

Verilen fonksiyonda, a = x-1 , b = 2 ve c = -1 dir.

Tepe noktası, T(1, 0) dır.
x = 0 için, y = -1 ise, grafik y ekseni (0, -1) de keser.
y = 0 için, x2 + 2x-1 = 0 (x-1)2 = 0 x1 = x2 = 1

Grafik, ş eksenine (1, 0)noktasında teğettir. Niçin?

Değişim tablosunu düzenleyip parabolü çizelim.







y = 0 ax2 + bx + c parabolümde, ax2 + bx + c = 0 denkleminin eşit iki kökü varsa yani,  = 0 ise, parabol tepe noktasında ş eksenine teğettir.

a<0 ise; a>0 ise;





7. y = x2-2x + 5 fonksiyonunun grafiğini çizelim.

Verilen denklemde, a = 1, b = -2, c = 5 tir.

Tepe noktası T (1, 4) tür.

x = 0 için, y = 5 ise, grafik y ekseni (0, 5) noktasında keser.
y = 0 için, x2-2ş + 5 0  = 4 - 4.5 = -16<0 gerçek kök yoktur. Grafik x eksenini kesmez.

Değişim tablosunu düzenleyip parabolü çizelim.






y = ax2 + bx + c parabolünde, ax2 + bx + c = 0 denkleminin kökleri yoksa, yani <0 ise, grafik x eksenini kesmez.

a>0 ise; a<0 ise;






8. Yanda grafiği verilen,
y = mx2 + x +2 fonksiyonu,
P(2, 1) noktasından geçiyor
ise, m'yi bulalım.


P noktasının koordinatları, verilen fonksiyon denklemini sağlar. Yani,
y = -mx2 + x + 2
1 = m . 22 + 2 + 2 4m = 3 bulunur.

İKİNCİ DERECEDEN BİR FONKSİYONUN GÖRÜNTÜ KÜMESİNİN
EN BÜYÜK VEYA EN KÜÇÜK ELEMANINI BULMA

y = ax2 + bx + c fonksiyonunun grafiğini çizmiştik. Şimdi bu grafikten yararlanarak fonksiyonun en küçük veya en büyük elemanını bulalım.

a>0 ise;





Grafikte görüldüğü gibi, x değişkeni ya kadar artarken, y fonksiyonu dan ya kadar azalmaktadır. x değişkeni, doğru artmaya devam ederken, y fonksiyonu da a doğru artmaktadır. Yani, y'nin en küçük değerini, olarak aldığı grafikte açık olarak görülmektedir.

Bu değere, fonksiyonun görüntü kümesinin en küçük (minimum) değeri denir.

a>0 olmak üzere, y = a2 + bx + c fonksiyonunun görüntü kümesinin en küçük değeri, tepe noktasının ordinatıdır.

Yani, dır. En büyük değeri yoktur.
Alıntı ile Cevapla
 


Yetkileriniz
Konu Açma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı

Forum Seç

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
Beyoğlu Ve Fatih'e Şok Baskınlar ceyLin Haberler 0 23 December 2008 17:46
Edebiyat Konuları eLanuR edebiyat - turkçe - dilbilgisi 0 9 December 2008 09:03
Şiir Türleri ve Kafiye eLanuR edebiyat - turkçe - dilbilgisi 0 9 December 2008 09:01
tarihi olayların dil ve edebiyat üzerindeki etkileri eLanuR edebiyat - turkçe - dilbilgisi 0 9 December 2008 08:59


Saat: 23:26


Telif Hakları vBulletin® v3.8.4 Copyright ©2000 - 2025, ve
Jelsoft Enterprises Ltd.'e Aittir.